Multidisciplinary Collaborative Journal | Vol.0 3 | Núm.0 4 | Oct Dic | 202 5 | https://mcjournal .editorialdoso .com 17 ISSN: 3073 - 1356 Artic le Soil Nematode Communities as Environmental Indicators in Plantations and Natural Tropical Forests of Ecuador Daniel Vera Aviles 1 ,* , Christian Mendoza Hernández 2 and Evelin Burgos Chiriguay 3 1 Universidad Técnica Estatal de Quevedo, Facultad de C iencias Agrarias y Forestales, Ecuador, Quevedo ; https://orcid.org/0000 - 0002 - 8875 - 0193 2 Universidad Técnica Estatal de Quevedo, Facultad de Ciencias Agrarias y Forestales, Ecuador, Quevedo ; https://orcid.org/0009 - 0007 - 7534 - 3429 ; cmendozah@uteq.edu.ec 3 Universidad Técnica Estatal de Quevedo, Facultad de Ciencias Agrarias y Forestales, Ecuador, Quevedo ; https://orcid.org/0009 - 0007 - 4914 - 5437 ; evelin.burgos2015@uteq.edu.ec * Correspondence : dvera@uteq.edu.ec https://doi.org/10.70881/mcj/v3/n4/86 Abstract : Soil nematodes are fundamental components of terrestrial ecosystems and serve as sensitive bioindicators of soil health, yet their diversity and ecologica l functions in tropical forests remain underexplored. This study characterized nematode communities in natural forests and teak ( Tectona grandis ) plantations at two localities in Ecuador (La María and La Represa), evaluating abundance, diversity, and ecolo gical indices. A total of 14,250 individuals were identified, with Meloidogyne (43.16%) and Pratylenchus (25.61%) as dominant families, followed by Mononchus (12.28%), while Dorylaimus and Rhabditis represented lower proportions (9.47%). Diversity indices indicated medium to high diversity (Shannon: 2.52 2.67) and high evenness, particularly in natural forests. The maturity index (MI) highlighted significant differences between systems, with higher values in natural forests (3.02 3.4) suggesting greater sta bility and lower disturbance compared to plantations (3.0 3.2), which reflected the prevalence of colonizer taxa. Despite higher abundance in plantations, natural forests supported more balanced trophic structures and greater ecological stability. These fi ndings are consistent with global evidence that land - use intensification reduces soil biodiversity and trophic complexity. Overall, nematode communities in Ecuadorian tropical soils provide robust indicators of ecological integrity, emphasizing the importa nce of conserving natural forests and integrating nematode - based metrics into sustainable land management and restoration strategies in tropical regions . Keywords: Soil nematodes, biodiversity, teak plantations, natural forests, bioindicators Resumen: Los nematodos del suelo son componentes fundamentales de los ecosistemas terrestres y sirven como bioindicadores sensibles de la salud del suelo, pero su diversidad y funciones ecológicas en los bosques tropicales siguen sin estar suficientemente estudiadas. Este estudio caracterizó las comunidades de nematodos en bosques naturales y plantaciones de teca ( Tectona grandis ) en dos localidades de Ecuador (La María y La Represa), evaluando la abundancia, la diversidad y los índices ecológicos. Se ident ificaron un total de 14 250 individuos, siendo Meloidogyne (43,16 %) y Pratylenchus (25,61 %) las familias dominantes, seguidas de Mononchus (12,28 %), mientras que Dorylaimus y Rhabditis Cit ation : Vera Aviles, D., Mendoza Hernández, C., & Burgos Chiriguay, E. (2025). Las comunidades de nematodos del suelo como indicadores medioambientales en plantaciones y bosques tropicales naturales de Ecuador. Multidisciplinary Collaborative Journal , 3 (4), 17 - 32. https://doi.org/10.70881/mcj/v3/n4 /86 Received : 15/0 4 /2025 Revised : 2 5 /0 9 /2025 Accepted : 30 /09/2025 Published : 07 /10/2025 Copyright: © 202 5 by the authors . T his article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/license s/by/4.0/ ).
Multdisciplinary Collaboratve Journal Multidisciplinary Collaborative Journal | Vol.0 3 | Núm.0 4 | Oct Dic | 202 5 | https://mcjournal.editorialdoso.com 18 representaron proporciones menores (9,47 %). Los índices de diversid ad indicaron una diversidad media - alta (Shannon: 2,52 - 2,67) y una uniformidad alta, especialmente en los bosques naturales. El índice de madurez (IM) puso de relieve diferencias significativas entre los sistemas, con valores más altos en los bosques natura les (3,02 - 3,4), lo que sugiere una mayor estabilidad y menos perturbaciones en comparación con las plantaciones (3,0 - 3,2), lo que reflejaba la prevalencia de taxones colonizadores. A pesar de la mayor abundancia en las plantaciones, los bosques naturales p resentaban estructuras tróficas más equilibradas y una mayor estabilidad ecológica. Estos resultados concuerdan con las pruebas globales de que la intensificación del uso de la tierra reduce la biodiversidad del suelo y la complejidad trófica . En general, las comunidades de nematodos en los suelos tropicales ecuatorianos proporcionan indicadores sólidos de la integridad ecológica, lo que pone de relieve la importancia de conservar los bosques naturales e integrar métricas basadas en los nematodos en las est rategias de gestión y restauración sostenibles de la tierra en las regiones tropicales Palabras clave: Nematodos del suelo, biodiversidad, plantaciones de teca, bosques naturales, bioindicadores 1. INTRODUCTION Soils represent one of the most biologically diverse habitats on Earth, harboring nearly a quarter of global biodiversity and sustaining processes that are indispensable for human life (Robinson et al., 2024; Voroney et al., 2024; Wall et al., 2015) . They provide the foundation for 95% of global food production and support t he provision of fibres, fuels, and pharmaceuticals, yet their biological complexity remains critically undervalued (Aransiola et al., 2024; Fatima et al., 2024; Fausak et al., 2024) . Among the vast array of organisms inhabiting soils, nematodes stand out due to their ubiquity, abundance, and functional diversity, positioning them as central drivers of ecosystem dynamics (Tu et al., 2024a; Wilschut & Geisen, 2021; Zhang et al., 2024) . Nematodes participate in virtually all soil processes, contributing to nutrient cycling, decomposition, and energy transfer within food webs (Li et al., 2024; Wang et al., 2024; Zhu et al., 202 3) . They are responsible for up to 30% of nitrogen mineralization in soils, thus directly influencing plant productivity and ecosystem fertility (Zhu et al., 2023) . Their trophic diversity is remarkable, encompassing bacterivores, fungivores, phytoparasites, predators, and omnivores, all of which maintain the balance of soi l ecosystems and regulate interactions between plants, microbes, and higher trophic levels. Because of these attributes, nematodes are not only critical for sustaining soil functions but also represent valuable indicators of environmental quality (Furmanczyk et al., 2025; Lazarova et al., 2021; Xing et al., 2022) . The development of ecological indices based on nematode communities, such as the maturity index and food web indices, has provided robu st tools to evaluate soil health and ecosystem stability. These indices integrate taxonomic composition with functional traits, revealing both the capacity of soils to sustain nutrient cycling and their resilience to disturbances (Ghaderi et al., 2025; Gonzalez et al., 2025; Pires et al., 2023) . Chang es in nematode communities are highly sensitive to anthropogenic pressures, including deforestation, intensive agriculture, and the application of agrochemicals, making them reliable sentinels of environmental change (Lehun et al., 2023; Pires et al., 2023; Zheng et al., 2024)
Multdisciplinary Collaboratve Journal Multidisciplinary Collaborative Journal | Vol.0 3 | Núm.0 4 | Oct Dic | 202 5 | https://mcjournal.editorialdoso.com 19 In tropical ecosystems, where biodiversity is unpara lleled yet under severe pressure, the role of nematodes as bioindicators gains particular relevance (Afzal & Ahmad, 2024; Shao et al., 2023) . Ecuador, situated within one of the most biodiverse regions of the planet, faces rapid land - use changes driven by agricultural expansion, logging, and infrastructure development (López - Tobar et al., 2024; Noh et al., 2022) . These processes threaten forest integrity and alter soil ecological functions. Understanding how nematode communities respond across gradients of land use is therefore crucial for informing conservation strategies and susta inable management of tropical soils (Biswal, 2022; Kleemann et al., 2022; Koo et al., 2024; Semprucci et al., 2025) . In this context, the present study aims to charact erize nematode communities in plantations, secondary forests, and natural tropical forests in Ecuador. By assessing their density, diversity, and functional structure, and by applying ecological indices that capture soil condition and food web dynamics, th is research seeks to establish the extent to which nematodes can be used as environmental indicators. This approach not only contributes to the understanding of soil biodiversity in tropical ecosystems but also provides evidence to guide policies and pract ices that reconcile forest conservation with productive land use . 2 . METHODOLOGY 2.1 Study areas The study was conducted in two sites of the State Technical University of Quevedo: La María and La Represa, during December at the onset of the rainy season. Edaphic nematode communities were sampled under two land covers: teak ( Tectona grandis L.f.) plant ations (PFT) and natural forests (BN). The teak stand in La Represa is about 20 years old, while in La María it is approximately eight years old, enabling comparison between plantations of different ages. Natural forests served as reference systems to asse ss the ecological integrity of nematode communities. These areas integrate high species diversity, complex canopy structure, regeneration dynamics, and flora fauna interactions, while providing key ecosystem services such as climate regulation, soil stabil ization, and biodiversity conservation. Understanding these attributes is essential for developing sustainable management strategies in tropical soils. Within La Represa natural forest, diverse tree species were identified, including Roseodendron donnell - s mithii (Guayacán Blanco), Cordia alliodora (Laurel), Centrolobium ochroxylum (Amarillo lagarto), Cecropia peltata (Guarumo), Triplaris cumingiana (Fernán Sánchez), Erythrina poeppigiana (Bombón), Cedrela odorata (Cedar), and Maclura tinctoria (Moral fino). On the La María campus, characteristic species were recorded such as Pseudobombax millei (Beldaco), Erythrina poeppigiana (Bombón), Mangifera indica (Mango), Erythrina velutina (Palo prieto), Mespilus germanica (Níspero), Ficus sp. (Higuerón) and Cecropia peltata (Guarumo). For soil sampling, two 5 × 5 m (25 m²) plots were established at each site, one within the teak plantation and one in the native forest, resulting in four plots in total. In each plot, four rhizospheric soil samples were collect ed to characterize nematode communities and assess their ecological dynamics under contrasting land covers.
Multdisciplinary Collaboratve Journal Multidisciplinary Collaborative Journal | Vol.0 3 | Núm.0 4 | Oct Dic | 202 5 | https://mcjournal.editorialdoso.com 20 2.2 Sample collection and analysis Soil nematode communities were sampled following standardized protocols (Vélez & Guzmán, 2022) . Four 5 × 5 m plots (25 m²) were established, from which four composite samples were obtained. At each sampling point, three 20 × 20 cm quadrats were excavated to a depth of 20 cm, and the subsamples were homogenized and store d in labelled plastic bags indicating site and replicate. Nematodes were extracted using the modified Baermann funnel technique (Cesarz et al., 2019) . Soil samples were sieved at 4 mm to remove coarse particles, and 250 g of homogenized soil were processed by capillary w etting, allowing active nematodes to migrate into the water phase. After 48 h, the nematode suspensions were recovered and sequentially filtered through 60, 140 and 500 mesh sieves. The final concentrate was examined under a microscope for nematode identif ication and total counts. Diversity was quantified using the Shannon Wiener index (Ht = Σ ti log2 ti ), which integrates taxon richness and relative abundance. Evenness was calculated as Et = Ht / Htmax, where Htmax = log2 (number of taxa), providing a standardized measure of equity across families. To assess successional status, the maturity index (MI) w as computed (Bongers, 1990) using MI = Σ vi pi, where vi is the c p value of taxon i and pi its proportional abundance, excluding phytophagous groups. All ecological indices were calculated using the NINJA software (Sieriebriennikov et al., 2014) , which integrates nematode - based indicators for soil quality assessment . 3. RESULTS 3.1 Abundance and Composition of Soil Nematode Communities A total of 14,250 nematodes were identified across the two localities and land covers (Table 1). The genus Meloidogyne dominated the assemblages, representing 43.16% of individuals (6,150), followed by Pratylenchus with 25.61% (3,650). Predatory taxa such as Mononchus accounted for 12.28% (1,750), while Dorylaimus and Rhabditis exhibited the lowest abundances, each representing 9.47% of the community (1,350 individuals). When comparing land covers, teak plantations supported a higher total abundance (8,400 individuals) compared with natural forests (5,850) (Figure 1). This trend was consistent across both study sites, with Meloidogyne and Pratylenchus showing a marked increase in plantations, suggesting that land - use change favors the proliferation of plant - parasitic genera. Conversely, genera associated with free - living and predatory functions (Mononchus, Dorylaimus, Rhabditis) were relatively more balanced between plantations and natural forests, though their overall representation remained lower.
Multdisciplinary Collaboratve Journal Multidisciplinary Collaborative Journal | Vol.0 3 | Núm.0 4 | Oct Dic | 202 5 | https://mcjournal.editorialdoso.com 21 Table 1. Abundance of nematodes at genus level in two localities and two study areas . Gender Mocache Quevedo Total Percentage (%) Natural Forest Teak plantation Natural Forest Teak plantation Pratylenchus 650 950 750 1300 3650 25,61 Meloidogyne 750 1750 1050 2600 6150 43,16 Mononchus 500 350 500 400 1750 12,28 Dorylaimus 450 300 350 250 1350 9,47 Rhabditis 500 300 350 200 1350 9,47 Total 2850 3650 3000 4750 14250 100 Figure 1. Abundance of nematodes at genus level in two localities and two forest systems. 3.2 Ecological diversity indices of nematode communities Biological The nematode communities identified in both forest systems and teak plantations were characterized through ecological indices that describe their diversity and distribution patterns (Table 2). Simpson’s index (1 - D) ranged from 0.90 to 0.92 acros s the genera, evidencing a high diversity and the absence of strong dominance by 650 950 750 1300 750 1750 1050 2600 500 350 500 400 450 300 350 250 500 300 350 200 0 500 1000 1500 2000 2500 3000 BN PFT BN PFT La Maria The Dam Abundance of nematodes Pratylenchus Meloidogyne Mononchus Dorylaimus Rhabditis
Multdisciplinary Collaboratve Journal Multidisciplinary Collaborative Journal | Vol.0 3 | Núm.0 4 | Oct Dic | 202 5 | https://mcjournal.editorialdoso.com 22 a single taxon. The Shannon index (H) varied between 2.52 and 2.67, which corresponds to intermediate levels of community diversity, suggesting the coexistence of several gene ra with balanced proportions. Evenness (e^H/S) values were consistently high, ranging from 0.77 to 0.90, indicating that the abundance of individuals was relatively evenly distributed among the different genera. Similarly, the equitability index (J) showed values between 0.91 and 0.96, reinforcing the interpretation that nematode communities exhibit a uniform distribution without extreme predominance of any genus. Table 2. Biodiversity index values according to Genus. Diversity indices Pratylenchus Meloidogyne Mononchus Dorylaimus Rhabditis N° of individuals 3650 6150 1750 1350 1350 Simpson_1 - D 0,9171 0,9011 0,9246 0,9143 0,9088 Shannon_H 2,632 2,523 2,673 2,615 2,583 Evenness_e^H/S 0,869 0,7793 0,9055 0,8538 0,8269 Equitability_J 0,9494 0,9101 0,9642 0,943 0,9315 3.3 Ecological diversity as a function of forest systems The analysis of ecological indices revealed that natural forests exhibited higher diversity values compared to teak plantations, regardless of the locality (Table 3). In La María, the natural forest showed higher Simpson and Shannon indices than La Represa , despite the latter presenting a greater number of individuals. This indicates that a larger population size does not necessarily reflect higher ecological diversity, but rather the balance in the distribution of genera. Table 3. Biodiversity index values as a function of ecological systems. Diversity indices Mocache Quevedo BN PFT BN PFT Number of individuals 2850 3650 3000 4750 Simpson_1 - D 0,793 0,680 0,760 0,614
Multdisciplinary Collaboratve Journal Multidisciplinary Collaborative Journal | Vol.0 3 | Núm.0 4 | Oct Dic | 202 5 | https://mcjournal.editorialdoso.com 23 Shannon_H 1,591 1,339 1,515 1,182 Evenness_e^H/S 0,982 0,763 0,910 0,652 Equitability_J 0,989 0,832 0,941 0,734 3.4. Maturity index of nematode communities The maturity index (MI) provided evidence of differences in the conservation status of the evaluated ecosystems (Figure 2). In La María, the native forest presented a value of 3.02, slightly higher than the teak plantation, which reached 3.00. Although the difference is small, it suggests that the native forest maintains marginally more stable nematode communities compared to the plantation. In contrast, La Represa exhibited clearer distinctions. The native forest recorded the highest MI value (3.39), while the teak plantation obtained 3.19. These results indicate that natural forests harbor nematode communities with greater ecological stability and reduced signs of disturbance. Plantations, despite supporting high abundances, reflect a lower successional st age, associated with simplified trophic structures and reduced ecological resilience . Figure 2. Values of the Maturity Indexes (MI). 3.5 To taxonomically describe the nematode general present in the study localities. Soil analysis in the studied ecosystems revealed the presence of five nematode genera: Pratylenchus, Meloidogyne, Mononchus, Dorylaimus and Rhabditis. These genera were consistently found across both natural forests and teak plantations, as well as in the two study localities, La María and La Represa (Table 4 ). Their ubiquity suggests that these 3,02 3,00 3,39 3,19 2,7 2,8 2,9 3,0 3,1 3,2 3,3 3,4 3,5 Native Forest Teak Plantation Native Forest Teak Plantation La Maria The Dam Maturity Index
Multdisciplinary Collaboratve Journal Multidisciplinary Collaborative Journal | Vol.0 3 | Núm.0 4 | Oct Dic | 202 5 | https://mcjournal.editorialdoso.com 24 genera constitute a core component of soil nematode communities in tropical ecosystems of coastal Ecuador. The functional traits of these genera reflected distinct feeding strategies that shape belowground trophic networks. Pratylenchus and Meloidogyne were classified as herbivores, highlighting their role as potential root parasites with direct implications for plant health and productivity. By contrast, Mononchus f unctioned as a predator, contributing to the regulation of smaller nematodes and other microfauna. Dorylaimus exhibited an omnivorous feeding habit, which points to its ecological versatility in exploiting diverse resources. Finally, Rhabditis was bacterio phagous, directly associated with the decomposition of organic matter and microbial turnover (Table 5 ). Table 4 . Nematode genus in two localities and two study areas. Location Mocache Quevedo Genus Natural Forest Plantation ( T. grandis ) Natural Forest Plantation ( T . grandis ) Pratylenchus X X X X Meloidogyne X X X X Mononchus X X X X Dorylaimus X X X X Rhabditis X X X X Table 5 . Habits of nematode genus in two localities and two study areas Genus Eating Habit Herbivore Predator Omnivore Bacteriophage Pratylenchus X Meloidogyne X
Multdisciplinary Collaboratve Journal Multidisciplinary Collaborative Journal | Vol.0 3 | Núm.0 4 | Oct Dic | 202 5 | https://mcjournal.editorialdoso.com 25 Mononchus X Dorylaimus X Rhabditis X 4. DISCUSSION Nematodes, as soil invertebrates, play essential roles in decomposition, nutrient cycling, and energy flow, making them reliable bioindicators of ecosystem functioning (Lu et al., 2020; Neher, 2010) . In this study, five dominant families (Meloidogyne, Pratylenchus, Mononchus, Dorylaimus, and Rhabditis ) were identified across natural forests and teak plantations in Ecuador. Their presence in both ecological systems reflects the adaptability of nematode taxa to different soil environments, a trend also observed in global assessments where nematodes persi st across gradients of disturbance and vegetation cover (Van Den H oogen et al., 2020) . The predominance of herbivorous nematodes (Meloidogyne, Pratylenchus) is consistent with their known capacity to exploit monoculture systems, often increasing under simplified vegetation structures (Habteweld et al., 2024; Thougnon Islas et al., 2024) . However, o ur results contrast with studies in other tropical forests where bacterivorous and omnivorous groups dominate, particularly under higher organic matter availability and microbial activity. These discrepancies may be explained by differences in soil fertili ty, microclimatic conditions, and management history of each system (Pires et al., 2023; S hao et al., 2023; Suman Ramteke et al., 2024) . Biodiversity indices provided further insights. Shannon and Simpson values indicated medium to high diversity across sites, with greater evenness in natural forests than in plantations. Similar patterns hav e been reported in Amazonian and Andean ecosystems, where complex canopy and litter inputs sustain diverse nematode communities, while managed systems tend to reduce trophic complexity (Krashevska et al., 2019; Tu et al., 2024b; Wen et al., 2025) . Differences between “La María” and “La Represa” likely reflect site - specific edaphic factors and management intensity, underscoring the sensitivity of nematodes to local ecological conditions. The maturity index hig hlighted clear contrasts between forest systems and plantations. Higher MI values in natural forests suggest communities dominated by K - strategist taxa typical of stable ecosystems, whereas plantations showed lower values associated with opportunistic colo nizers. Comparable results have been documented in tropical and temperate systems, where forestry practices alter nematode guilds through changes in organic inputs and disturbance regimes (Čerevková et al., 2021; Sánchez - Moreno & Talavera, 2013) . Overall, these findings r einforce the importance of nematode communities as integrative indicators of soil health. By comparing local results with global evidence, it becomes evident that forest conservation supports functional diversity and ecosystem stability, while monocultures simplify food webs and increase vulnerability. Incorporating
Multdisciplinary Collaboratve Journal Multidisciplinary Collaborative Journal | Vol.0 3 | Núm.0 4 | Oct Dic | 202 5 | https://mcjournal.editorialdoso.com 26 nematode - based metrics into soil monitoring frameworks could enhance sustainable land management strategies in tropical regions . 5. CONCLUSION This study demonstrates that soil nematode communities are sensitive and robust indicators of ecosystem condition in tropical environments of Ecuador. The dominance of phytoparasitic groups such as Meloidogyne and Pratylenchus highlights the persistent pre ssure on root systems, while the presence of predatory and bacterivorous taxa reflects the functional heterogeneity required for soil resilience. Diversity and maturity indices confirmed that natural forests sustain more stable and balanced communities com pared to teak plantations, underscoring the ecological costs of land - use simplification. Overall, the comparative analysis between natural and managed systems reveals that nematode - based metrics provide a powerful tool to monitor soil health, evaluate ecol ogical maturity, and detect early signs of disturbance. These findings reinforce the importance of conserving native forests to maintain trophic complexity and functional diversity, while also suggesting that plantation management should integrate biologic al indicators to achieve sustainability. Nematode community analysis therefore offers not only ecological insight but also practical applications for restoration and land - use planning in tropical regions . Authors’ Contributions: Conceptualization, D.V.A., C.M.H., and E.B.C.; methodology, D.V.A., C.M.H., and E.B.C.; investigation, D.V.A., C.M.H., and E.B.C.; validation, C.M.H.; formal analysis, D.V.A.; resources, D.V.A.; data curation, D.V.A., C.M.H., and E.B.C.; writing original draft preparation, D.V.A.; w riting review and editing, D.V.A., C.M.H., and E.B.C.; visualization, D.V.A.; supervision, C.M.H.; project administration, D.V.A.; funding acquisition, D.V.A. All authors have read and agreed to the published version of the manuscript . Funding: This research received no external funding. Acknowledgments: The authors sincerely thank the Quevedo State Technical University and the Faculty of Agricultural and Forestry Sciences. Data Availability Statement: The data are available upon reasonable request f rom the corresponding author: dvera@uteq.edu.ec Conflict of Interest: The authors declare no conflict of interest. REFERENCES Afzal, S., & Ahmad, W. (2024). Temporal and spatial variations of soil nematode assemblages across distinct forest ecosystems. Food Webs , 41 , e00376. https://doi.org/10.1016/j.fooweb.2024.e00376
Multdisciplinary Collaboratve Journal Multidisciplinary Collaborative Journal | Vol.0 3 | Núm.0 4 | Oct Dic | 202 5 | https://mcjournal.editorialdoso.com 27 Aransiola, S. A., Babaniyi, B. R., Aransiola, A. B., & Maddela , N. R. (Eds.). (2024). Prospects for Soil Regeneration and Its Impact on Environmental Protection . Springer Nature Switzerland. https://doi.org/10.1007/978 - 3 - 031 - 53270 - 2 Biswal, D. (2022). Nematodes as Ghosts of Land Use Past: Elucidating the Roles of Soi l Nematode Community Studies as Indicators of Soil Health and Land Management Practices. Applied Biochemistry and Biotechnology , 194 (5), 2357 - 2417. https://doi.org/10.1007/s12010 - 022 - 03808 - 9 Čerevková, A., Renčo, M., Miklisová, D., & Gömöryová, E. (2021). Soil Nematode Communities in Managed and Natural Temperate Forest. Diversity , 13 (7), 327. https://doi.org/10.3390/d13070327 Cesarz, S., Schulz, A. E., Beugnon, R., & Eisenhauer, N. (2019). Testing soil nematode extraction efficiency using different variati ons of the Baermann - funnel method . https://doi.org/10.25674/SO91201 Fatima, H., Park, M., Ameen, M., Aslam, I., Athar, T., Shah, S. S. H., Abbasi, G. H., Ali, M., Waris, A. A., & Arshad, M. N. (2024). Soil Security to Address Potential Global Issues. En En vironmental Nexus for Resource Management . CRC Press. Fausak, L. K., Bridson, N., Diaz - Osorio, F., Jassal, R. S., & Lavkulich, L. M. (2024). Soil health a perspective. Frontiers in Soil Science , 4 , 1462428. https://doi.org/10.3389/fsoil.2024.1462428 Furm anczyk, E. M., Kozacki, D., Ourry, M., Bickel, S., Olimi, E., Masquelier, S., Turci, S., Bohr, A., Maisel, H., D’Avino, L., & Malusà, E. (2025). An Analysis of Soil Nematode Communities Across Diverse Horticultural Cropping Systems. Soil Systems , 9 (3), 77. https://doi.org/10.3390/soilsystems9030077 Ghaderi, R., Hayden, H. L., Jayaramaiah, R. H., Hu, H., & He, J. (2025). An Innovative Framework Fosters Practical Application of Nematode Based Indices in Soil Health Assessment. European Journal of Soil Science , 76 (4), e70149. https://doi.org/10.1111/ejss.70149
Multdisciplinary Collaboratve Journal Multidisciplinary Collaborative Journal | Vol.0 3 | Núm.0 4 | Oct Dic | 202 5 | https://mcjournal.editorialdoso.com 28 Gonzalez, Y. N., Strauss, S. L., Grabau, Z. J., Bacon, A. R., & Maltais - Landry, G. (2025). Nematodes are a dynamic and novel soil health indicator in a cover cropped tree system. Applied Soil Ecology , 206 , 105917. https://doi.org/10.1016/j.apsoil.2025.105917 Habteweld, A., Kantor, M., Kantor, C., & Handoo, Z. (2024). Understanding the dynamic interactions of root - knot nematodes and their host: Role of plant growth promoting bacteria and abiotic factors. Fr ontiers in Plant Science , 15 , 1377453. https://doi.org/10.3389/fpls.2024.1377453 Kleemann, J., Koo, H., Hensen, I., Mendieta - Leiva, G., Kahnt, B., Kurze, C., Inclan, D. J., Cuenca, P., Noh, J. K., Hoffmann, M. H., Factos, A., Lehnert, M., Lozano, P., & Für st, C. (2022). Priorities of action and research for the protection of biodiversity and ecosystem services in continental Ecuador. Biological Conservation , 265 , 109404. https://doi.org/10.1016/j.biocon.2021.109404 Koo, H., Kleemann, J., Cuenca, P., Noh, J. K., & Fürst, C. (2024). Implications of landscape changes for ecosystem services and biodiversity: A national assessment in Ecuador. Ecosystem Services , 69 , 101652. https://doi.org/10.1016/j.ecoser.2024.101652 Krashevska, V., Kudrin, A. A., Widyastuti, R. , & Scheu, S. (2019). Changes in Nematode Communities and Functional Diversity With the Conversion of Rainforest Into Rubber and Oil Palm Plantations. Frontiers in Ecology and Evolution , 7 , 487. https://doi.org/10.3389/fevo.2019.00487 Lazarova, S., Coyne, D., G. Rodríguez, M. G., Peteira, B., & Ciancio, A. (2021). Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture A Review. Diversity , 13 (2), 64. https://doi.org/10.3390/d13020064 Lehun, A. L., Duarte, G. S. C., & Takemoto, R. M. (2023). Nematodes as indicators of environmental changes in a river with different levels of anthropogenic impact. Anais da Academia Brasileira de Ciências , 95 (4), e20200307. https://doi.org/10.1590/0001 - 3765202320200307
Multdisciplinary Collaboratve Journal Multidisciplinary Collaborative Journal | Vol.0 3 | Núm.0 4 | Oct Dic | 202 5 | https://mcjournal.editorialdoso.com 29 Li, G., Liu, T., Whalen , J. K., & Wei, Z. (2024). Nematodes: An overlooked tiny engineer of plant health. Trends in Plant Science , 29 (1), 52 - 63. https://doi.org/10.1016/j.tplants.2023.06.022 López - Tobar, R., Herrera - Feijoo, R. J., García - Robredo, F., Mateo, R. G., & Torres, B. ( 2024). Timber harvesting and conservation status of forest species in the Ecuadorian Amazon. Frontiers in Forests and Global Change , 7 , 1389852. https://doi.org/10.3389/ffgc.2024.1389852 Lu, Q., Liu, T., Wang, N., Dou, Z., Wang, K., & Zuo, Y. (2020). A rev iew of soil nematodes as biological indicators for the assessment of soil health. Frontiers of Agricultural Science and Engineering , 7 (3), 275. https://doi.org/10.15302/J - FASE - 2020327 Neher, D. A. (2010). Ecology of Plant and Free - Living Nematodes in Natur al and Agricultural Soil. Annual Review of Phytopathology , 48 (1), 371 - 394. https://doi.org/10.1146/annurev - phyto - 073009 - 114439 Noh, J. K., Echeverria, C., Gaona, G., Kleemann, J., Koo, H., Fürst, C., & Cuenca, P. (2022). Forest Ecosystem Fragmentation in E cuador: Challenges for Sustainable Land Use in the Tropical Andean. Land , 11 (2), 287. https://doi.org/10.3390/land11020287 Pires, D., Orlando, V., Collett, R. L., Moreira, D., Costa, S. R., & Inácio, M. L. (2023). Linking Nematode Communities and Soil Heal th under Climate Change. Sustainability , 15 (15), 11747. https://doi.org/10.3390/su151511747 Robinson, J. M., Liddicoat, C., Muñoz - Rojas, M., & Breed, M. F. (2024). Restoring soil biodiversity. Current Biology , 34 (9), R393 - R398. https://doi.org/10.1016/j.cu b.2024.02.035 Sánchez - Moreno, S., & Talavera, M. (2013). Los nematodos como indicadores ambientales en agroecosistemas. Ecosistemas , 22 (1), 50 - 55. https://doi.org/10.7818/ECOS.2013.22 - 1.09
Multdisciplinary Collaboratve Journal Multidisciplinary Collaborative Journal | Vol.0 3 | Núm.0 4 | Oct Dic | 202 5 | https://mcjournal.editorialdoso.com 30 Semprucci, F., Boufahja, F., Grassi, E., & Al Zharani , M. (2025). Review Article: The multifaceted role of nematodes in advancing the One Health approach. Annals of Applied Biology , aab.70038. https://doi.org/10.1111/aab.70038 Shao, Y., Wang, Z., Liu, T., Kardol, P., Ma, C., Hu, Y., Cui, Y., Zhao, C., Zhang, W., Guo, D., & Fu, S. (2023). Drivers of nematode diversity in forest soils across climatic zones. Proceedings of the Royal Society B: Biological Sciences , 290 (1994), 20230107. https://doi.org/10.1098/rspb.2023.0107 Sieriebriennikov, B., Ferris, H., & De Goede, R. G. M. (2014). NINJA: An automated calculation system for nematode - based biological monitoring. European Journal of Soil Biology , 61 , 90 - 93. https://doi.org/10.1016/j.ejsobi.2014.02.004 Suman Ramteke, Meenakshi Dewangan, Majid Ali, & Sanjay Thiske . (2024). A brief review on biodiversity of soil nematode. World Journal of Advanced Research and Reviews , 24 (1), 359 - 372. https://doi.org/10.30574/wjarr.2024.24.1.3008 Thougnon Islas, A. J., Chaves, E., Carmona, D., San Martino, S., & Mondino, E. (2024). Caracterización de la comunidad de nematodos de suelo encuatro sistemas productivos del sudeste bonaerense, Argentina. Ecología Austral , 240 - 255. https://doi.org/10.25260/EA.24.34.2.0.2237 Tu, C., Zhang, A., Luo, R., Qiang, W., Zhang, Y., Pang, X., & Kuzya kov, Y. (2024a). Linking nematode trophic diversity to plantation identity and soil nutrient cycling. Geoderma , 448 , 116945. https://doi.org/10.1016/j.geoderma.2024.116945 Tu, C., Zhang, A., Luo, R., Qiang, W., Zhang, Y., Pang, X., & Kuzyakov, Y. (2024b). Linking nematode trophic diversity to plantation identity and soil nutrient cycling. Geoderma , 448 , 116945. https://doi.org/10.1016/j.geoderma.2024.116945 Van Den Hoogen, J., Geisen, S., Wall, D. H., Wardle, D. A., Traunspurger, W., De Goede, R. G. M., Ada ms, B. J., Ahmad, W., Ferris, H., Bardgett, R. D., Bonkowski, M., Campos - Herrera, R., Cares, J. E., Caruso, T., De Brito Caixeta, L., Chen, X., Costa, S. R., Creamer, R., Da Cunha E Castro, J. M., … Crowther, T. W. (2020). A global database of soil nematod e abundance and functional
Multdisciplinary Collaboratve Journal Multidisciplinary Collaborative Journal | Vol.0 3 | Núm.0 4 | Oct Dic | 202 5 | https://mcjournal.editorialdoso.com 31 group composition. Scientific Data , 7 (1), 103. https://doi.org/10.1038/s41597 - 020 - 0437 - 3 Vélez, S., & Guzmán, A. (2022). Identification methods for root - knot nematode Meloidogyne. Manglar , 19 (2), 209 - 215. https://doi.org/10.17268 /manglar.2022.026 Voroney, R. P., Heck, R. J., & Kuzyakov, Y. (2024). The habitat of the soil biota. En Soil Microbiology, Ecology and Biochemistry (pp. 13 - 40). Elsevier. https://doi.org/10.1016/B978 - 0 - 12 - 822941 - 5.00002 - 8 Wall, D. H., Nielsen, U. N., & Six , J. (2015). Soil biodiversity and human health. Nature , 528 (7580), 69 - 76. https://doi.org/10.1038/nature15744 Wang, J., Liu, T., Zhao, J., Ning, C., Chen, S., Zhang, X., Liu, G., Kuzyakov, Y., & Yan, W. (2024). Energy flows through nematode food webs depe nding on the soil carbon and nitrogen contents after forest conversion. Science of The Total Environment , 935 , 173322. https://doi.org/10.1016/j.scitotenv.2024.173322 Wen, H., Van Meerbeek, K., Zhang, H., Peng, Y., Yue, K., Ni, X., Qiu, D., Chen, Z., Bol, R., & Wu, F. (2025). Loss of soil fauna following conversion of subtropical natural forests. Soil Ecology Letters , 7 (3), 250315. https://doi.org/10.1007/s42832 - 025 - 0315 - 1 Wilschut, R. A., & Geisen, S. (2021). Nematodes as Drivers of Plant Performance in Na tural Systems. Trends in Plant Science , 26 (3), 237 - 247. https://doi.org/10.1016/j.tplants.2020.10.006 Xing, W., Lu, X., Niu, S., Chen, D., Wang, J., Liu, Y., Wang, B., Zhang, S., Li, Z., Yao, X., Yu, Q., & Tian, D. (2022). Global patterns and drivers of so il nematodes in response to nitrogen enrichment. CATENA , 213 , 106235. https://doi.org/10.1016/j.catena.2022.106235 Zhang, C., Wright, I. J., Nielsen, U. N., Geisen, S., & Liu, M. (2024). Linking nematodes and ecosystem function: A trait - based framework. Tr ends in Ecology & Evolution , 39 (7), 644 - 653. https://doi.org/10.1016/j.tree.2024.02.002
Multdisciplinary Collaboratve Journal Multidisciplinary Collaborative Journal | Vol.0 3 | Núm.0 4 | Oct Dic | 202 5 | https://mcjournal.editorialdoso.com 32 Zheng, F., Tang, M., Gao, J., Guo, X., Zhu, D., Yang, X., & Chen, B. (2024). Contrasting patterns and drivers of soil nematode community in regions with different urban ization levels. Applied Soil Ecology , 201 , 105491. https://doi.org/10.1016/j.apsoil.2024.105491 Zhu, B., Wan, B., Liu, T., Zhang, C., Cheng, L., Cheng, Y., Tian, S., Chen, X., Hu, F., Whalen, J. K., & Liu, M. (2023). Biochar enhances multifunctionality by increasing the uniformity of energy flow through a soil nematode food web. Soil Biology and Biochemistry , 183 , 109056. https://doi.org/10.1016/j.soilbio.2023.109056