Multidisciplinary
Collaborative Journal | Vol.0
3
| Núm.0
4
|
Oct
–
Dic
| 202
5
| https://mcjournal
.editorialdoso
.com
17
ISSN:
3073
-
1356
Artic
le
Soil Nematode Communities as Environmental Indicators in
Plantations and Natural Tropical Forests of Ecuador
Daniel Vera Aviles
1
,*
,
Christian Mendoza Hernández
2
and
Evelin Burgos Chiriguay
3
1
Universidad Técnica Estatal de Quevedo,
Facultad de
C
iencias
Agrarias
y
Forestales,
Ecuador,
Quevedo
;
https://orcid.org/0000
-
0002
-
8875
-
0193
2
Universidad Técnica Estatal de Quevedo,
Facultad de
Ciencias Agrarias y
Forestales,
Ecuador,
Quevedo
;
https://orcid.org/0009
-
0007
-
7534
-
3429
;
cmendozah@uteq.edu.ec
3
Universidad Técnica Estatal de Quevedo,
Facultad de
Ciencias Agrarias y
Forestales,
Ecuador,
Quevedo
;
https://orcid.org/0009
-
0007
-
4914
-
5437
;
evelin.burgos2015@uteq.edu.ec
*
Correspondence
:
dvera@uteq.edu.ec
https://doi.org/10.70881/mcj/v3/n4/86
Abstract
:
Soil nematodes are fundamental components of terrestrial
ecosystems and serve as sensitive bioindicators of soil health, yet their
diversity and ecologica
l functions in tropical forests remain underexplored.
This study characterized nematode communities in natural forests and teak
(
Tectona grandis
) plantations at two localities in Ecuador (La María and La
Represa), evaluating abundance, diversity, and ecolo
gical indices. A total of
14,250 individuals were identified, with Meloidogyne (43.16%) and
Pratylenchus (25.61%) as dominant families, followed by Mononchus
(12.28%), while Dorylaimus and Rhabditis represented lower proportions
(9.47%). Diversity indices
indicated medium to high diversity (Shannon: 2.52
–
2.67) and high evenness, particularly in natural forests. The maturity index
(MI) highlighted significant differences between systems, with higher values
in natural forests (3.02
–
3.4) suggesting greater sta
bility and lower
disturbance compared to plantations (3.0
–
3.2), which reflected the
prevalence of colonizer taxa. Despite higher abundance in plantations,
natural forests supported more balanced trophic structures and greater
ecological stability. These fi
ndings are consistent with global evidence that
land
-
use intensification reduces soil biodiversity and trophic complexity.
Overall, nematode communities in Ecuadorian tropical soils provide robust
indicators of ecological integrity, emphasizing the importa
nce of conserving
natural forests and integrating nematode
-
based metrics into sustainable land
management and restoration strategies in tropical regions
.
Keywords:
Soil nematodes, biodiversity, teak plantations, natural forests,
bioindicators
Resumen:
Los nematodos del suelo son componentes fundamentales de los
ecosistemas terrestres y sirven como bioindicadores sensibles de la salud
del suelo, pero su diversidad y funciones ecológicas en los bosques
tropicales siguen sin estar suficientemente
estudiadas. Este estudio
caracterizó las comunidades de nematodos en bosques naturales y
plantaciones de teca (
Tectona grandis
) en dos localidades de Ecuador (La
María y La Represa), evaluando la abundancia, la diversidad y los índices
ecológicos. Se ident
ificaron un total de 14 250 individuos, siendo
Meloidogyne (43,16 %) y Pratylenchus (25,61 %) las familias dominantes,
seguidas de Mononchus (12,28 %), mientras que Dorylaimus y Rhabditis
Cit
ation
:
Vera
Aviles, D., Mendoza
Hernández, C., & Burgos Chiriguay, E.
(2025). Las comunidades de nematodos
del suelo como indicadores
medioambientales en plantaciones y
bosques tropicales naturales de
Ecuador.
Multidisciplinary
Collaborative Journal
,
3
(4), 17
-
32.
https://doi.org/10.70881/mcj/v3/n4
/86
Received
:
15/0
4
/2025
Revised
:
2
5
/0
9
/2025
Accepted
:
30
/09/2025
Published
:
07
/10/2025
Copyright:
© 202
5
by the authors
.
T
his article is an open access
article
distributed under the terms and
conditions of the
Creative Commons
Attribution (CC BY) license
(
https://creativecommons.org/license
s/by/4.0/
).
Multdisciplinary Collaboratve Journal
Multidisciplinary Collaborative Journal
| Vol.0
3
| Núm.0
4
|
Oct
–
Dic
| 202
5
| https://mcjournal.editorialdoso.com
18
representaron proporciones menores (9,47 %). Los índices de diversid
ad
indicaron una diversidad media
-
alta (Shannon: 2,52
-
2,67) y una uniformidad
alta, especialmente en los bosques naturales. El índice de madurez (IM) puso
de relieve diferencias significativas entre los sistemas, con valores más altos
en los bosques natura
les (3,02
-
3,4), lo que sugiere una mayor estabilidad y
menos perturbaciones en comparación con las plantaciones (3,0
-
3,2), lo que
reflejaba la prevalencia de taxones colonizadores. A pesar de la mayor
abundancia en las plantaciones, los bosques naturales p
resentaban
estructuras tróficas más equilibradas y una mayor estabilidad ecológica.
Estos resultados concuerdan con las pruebas globales de que la
intensificación del uso de la tierra reduce la biodiversidad del suelo y la
complejidad trófica
.
En general,
las comunidades de nematodos en los
suelos tropicales ecuatorianos proporcionan indicadores sólidos de la
integridad ecológica, lo que pone de relieve la importancia de conservar los
bosques naturales e integrar métricas basadas en los nematodos en las
est
rategias de gestión y restauración sostenibles de la tierra en las regiones
tropicales
Palabras clave:
Nematodos del suelo, biodiversidad, plantaciones de teca,
bosques naturales, bioindicadores
1.
INTRODUCTION
Soils represent one of the most biologically diverse habitats on Earth, harboring nearly
a quarter of global biodiversity and sustaining processes that are indispensable for
human life
(Robinson et
al., 2024; Voroney et
al., 2024; Wall et
al., 2015)
. They provide
the foundation for 95% of global food production and support t
he provision of fibres, fuels,
and pharmaceuticals, yet their biological complexity remains critically undervalued
(Aransiola et
al., 2024; Fatima et
al., 2024;
Fausak et
al., 2024)
. Among the vast array
of organisms inhabiting soils, nematodes stand out due to their ubiquity, abundance, and
functional diversity, positioning them as central drivers of ecosystem dynamics
(Tu et
al.,
2024a; Wilschut & Geisen, 2021; Zhang et
al., 2024)
.
Nematodes participate in virtually all soil processes, contributing to nutrient cycling,
decomposition, and energy transfer within food webs
(Li et
al., 2024; Wang et
al., 2024;
Zhu et
al., 202
3)
. They are responsible for up to 30% of nitrogen mineralization in soils,
thus directly influencing plant productivity and ecosystem fertility
(Zhu et
al., 2023)
. Their
trophic diversity is remarkable, encompassing bacterivores, fungivores, phytoparasites,
predators, and omnivores, all of which maintain the balance of soi
l ecosystems and
regulate interactions between plants, microbes, and higher trophic levels. Because of
these attributes, nematodes are not only critical for sustaining soil functions but also
represent valuable indicators of environmental quality
(Furmanczyk et
al., 2025;
Lazarova et
al., 2021; Xing et
al., 2022)
.
The development of ecological indices based on nematode communities, such as the
maturity index and food web indices, has provided robu
st tools to evaluate soil health
and ecosystem stability. These indices integrate taxonomic composition with functional
traits, revealing both the capacity of soils to sustain nutrient cycling and their resilience
to disturbances
(Ghaderi et
al., 2025; Gonzalez et
al., 2025; Pires et
al., 2023)
. Chang
es
in nematode communities are highly sensitive to anthropogenic pressures, including
deforestation, intensive agriculture, and the application of agrochemicals, making them
reliable sentinels of environmental change
(Lehun et
al., 2023; Pires et
al., 2023; Zheng
et
al., 2024)
Multdisciplinary Collaboratve Journal
Multidisciplinary Collaborative Journal
| Vol.0
3
| Núm.0
4
|
Oct
–
Dic
| 202
5
| https://mcjournal.editorialdoso.com
19
In tropical ecosystems, where biodiversity is unpara
lleled yet under severe pressure, the
role of nematodes as bioindicators gains particular relevance
(Afzal & Ahmad, 2024;
Shao et
al., 2023)
. Ecuador, situated within one of the most biodiverse regions of the
planet, faces rapid land
-
use changes driven by agricultural expansion, logging, and
infrastructure development
(López
-
Tobar et
al., 2024; Noh et
al., 2022)
. These
processes threaten forest integrity and alter soil ecological functions. Understanding how
nematode communities respond across gradients of land use is therefore crucial for
informing conservation strategies and susta
inable management of tropical soils
(Biswal,
2022; Kleemann et
al., 2022; Koo et
al., 2024; Semprucci et
al., 2025)
.
In this context, the present study aims to charact
erize nematode communities in
plantations, secondary forests, and natural tropical forests in Ecuador. By assessing their
density, diversity, and functional structure, and by applying ecological indices that
capture soil condition and food web dynamics, th
is research seeks to establish the extent
to which nematodes can be used as environmental indicators. This approach not only
contributes to the understanding of soil biodiversity in tropical ecosystems but also
provides evidence to guide policies and pract
ices that reconcile forest conservation with
productive land use
.
2
.
METHODOLOGY
2.1
Study areas
The study was conducted in two sites of the State Technical University of Quevedo: La
María and La Represa, during December at the onset of the rainy season. Edaphic
nematode communities were sampled under two land covers: teak (
Tectona grandis
L.f.)
plant
ations (PFT) and natural forests (BN). The teak stand in La Represa is about 20
years old, while in La María it is approximately eight years old, enabling comparison
between plantations of different ages. Natural forests served as reference systems to
asse
ss the ecological integrity of nematode communities. These areas integrate high
species diversity, complex canopy structure, regeneration dynamics, and flora
–
fauna
interactions, while providing key ecosystem services such as climate regulation, soil
stabil
ization, and biodiversity conservation. Understanding these attributes is essential
for developing sustainable management strategies in tropical soils.
Within La Represa natural forest, diverse tree species were identified, including
Roseodendron donnell
-
s
mithii
(Guayacán Blanco),
Cordia alliodora
(Laurel),
Centrolobium ochroxylum
(Amarillo lagarto),
Cecropia peltata
(Guarumo),
Triplaris
cumingiana
(Fernán Sánchez),
Erythrina poeppigiana
(Bombón),
Cedrela odorata
(Cedar), and
Maclura tinctoria
(Moral fino).
On the La María campus, characteristic
species were recorded such as
Pseudobombax millei
(Beldaco),
Erythrina poeppigiana
(Bombón),
Mangifera indica
(Mango),
Erythrina velutina
(Palo prieto),
Mespilus
germanica
(Níspero),
Ficus
sp. (Higuerón) and
Cecropia peltata
(Guarumo).
For soil sampling, two 5 × 5 m (25 m²) plots were established at each site, one within the
teak plantation and one in the native forest, resulting in four plots in total. In each plot,
four rhizospheric soil samples were collect
ed to characterize nematode communities and
assess their ecological dynamics under contrasting land covers.
Multdisciplinary Collaboratve Journal
Multidisciplinary Collaborative Journal
| Vol.0
3
| Núm.0
4
|
Oct
–
Dic
| 202
5
| https://mcjournal.editorialdoso.com
20
2.2
Sample collection and analysis
Soil nematode communities were sampled following standardized protocols
(Vélez &
Guzmán, 2022)
. Four 5 × 5 m plots (25 m²) were established, from which four composite
samples were obtained. At each sampling point, three 20 × 20 cm quadrats were
excavated to a depth of 20 cm, and the subsamples were homogenized and store
d in
labelled plastic bags indicating site and replicate.
Nematodes were extracted using the modified Baermann funnel technique
(Cesarz
et
al., 2019)
. Soil samples were sieved at 4 mm to remove coarse particles, and 250 g
of homogenized soil were processed by capillary w
etting, allowing active nematodes to
migrate into the water phase. After 48 h, the nematode suspensions were recovered and
sequentially filtered through 60, 140 and 500 mesh sieves. The final concentrate was
examined under a microscope for nematode identif
ication and total counts.
Diversity was quantified using the Shannon
–
Wiener index (Ht =
–
Σ
ti log2 ti
), which
integrates taxon richness and relative abundance. Evenness was calculated as Et = Ht /
Htmax, where Htmax = log2 (number of taxa), providing a standardized measure of
equity across families. To assess successional status, the maturity index (MI) w
as
computed (Bongers, 1990) using MI =
Σ
vi pi, where vi is the c
–
p value of taxon i and pi
its proportional abundance, excluding phytophagous groups.
All ecological indices were
calculated using the NINJA software
(Sieriebriennikov et
al., 2014)
, which integrates
nematode
-
based indicators for soil quality assessment
.
3. RESULTS
3.1 Abundance and Composition of Soil Nematode Communities
A total of 14,250 nematodes were identified across the two localities and land covers
(Table 1). The genus Meloidogyne dominated the assemblages, representing 43.16% of
individuals (6,150), followed by Pratylenchus with 25.61% (3,650). Predatory taxa such
as Mononchus accounted for 12.28% (1,750), while Dorylaimus and Rhabditis exhibited
the lowest abundances, each representing 9.47% of the community (1,350 individuals).
When comparing land covers, teak plantations supported a higher total abundance
(8,400
individuals) compared with natural forests (5,850) (Figure 1). This trend was
consistent across both study sites, with Meloidogyne and Pratylenchus showing a
marked increase in plantations, suggesting that land
-
use change favors the proliferation
of plant
-
parasitic genera. Conversely, genera associated with free
-
living and predatory
functions (Mononchus, Dorylaimus, Rhabditis) were relatively more balanced between
plantations and natural forests, though their overall representation remained lower.
Multdisciplinary Collaboratve Journal
Multidisciplinary Collaborative Journal
| Vol.0
3
| Núm.0
4
|
Oct
–
Dic
| 202
5
| https://mcjournal.editorialdoso.com
21
Table
1.
Abundance of nematodes at genus level in two localities and
two study areas
.
Gender
Mocache
Quevedo
Total
Percentage
(%)
Natural Forest
Teak plantation
Natural Forest
Teak plantation
Pratylenchus
650
950
750
1300
3650
25,61
Meloidogyne
750
1750
1050
2600
6150
43,16
Mononchus
500
350
500
400
1750
12,28
Dorylaimus
450
300
350
250
1350
9,47
Rhabditis
500
300
350
200
1350
9,47
Total
2850
3650
3000
4750
14250
100
Figure 1.
Abundance of nematodes at genus level in two
localities and two forest systems.
3.2 Ecological diversity indices of nematode communities
Biological The nematode communities identified in both forest systems and teak
plantations were characterized through ecological indices that describe their diversity
and distribution patterns (Table 2). Simpson’s index (1
-
D) ranged from 0.90 to 0.92
acros
s the genera, evidencing a high diversity and the absence of strong dominance by
650
950
750
1300
750
1750
1050
2600
500
350
500
400
450
300
350
250
500
300
350
200
0
500
1000
1500
2000
2500
3000
BN
PFT
BN
PFT
La Maria
The Dam
Abundance of nematodes
Pratylenchus
Meloidogyne
Mononchus
Dorylaimus
Rhabditis
Multdisciplinary Collaboratve Journal
Multidisciplinary Collaborative Journal
| Vol.0
3
| Núm.0
4
|
Oct
–
Dic
| 202
5
| https://mcjournal.editorialdoso.com
22
a single taxon. The Shannon index (H) varied between 2.52 and 2.67, which corresponds
to intermediate levels of community diversity, suggesting the coexistence of several
gene
ra with balanced proportions. Evenness (e^H/S) values were consistently high,
ranging from 0.77 to 0.90, indicating that the abundance of individuals was relatively
evenly distributed among the different genera. Similarly, the equitability index (J) showed
values between 0.91 and 0.96, reinforcing the interpretation that nematode communities
exhibit a uniform distribution without extreme predominance of any genus.
Table 2.
Biodiversity index values according to Genus.
Diversity indices
Pratylenchus
Meloidogyne
Mononchus
Dorylaimus
Rhabditis
N° of individuals
3650
6150
1750
1350
1350
Simpson_1
-
D
0,9171
0,9011
0,9246
0,9143
0,9088
Shannon_H
2,632
2,523
2,673
2,615
2,583
Evenness_e^H/S
0,869
0,7793
0,9055
0,8538
0,8269
Equitability_J
0,9494
0,9101
0,9642
0,943
0,9315
3.3 Ecological diversity as a function of forest systems
The analysis of ecological indices revealed that natural forests exhibited higher diversity
values compared to teak plantations, regardless of the locality (Table 3). In La María, the
natural forest showed higher Simpson and Shannon indices than La Represa
, despite
the latter presenting a greater number of individuals. This indicates that a larger
population size does not necessarily reflect higher ecological diversity, but rather the
balance in the distribution of genera.
Table 3.
Biodiversity index values
as a function of ecological systems.
Diversity indices
Mocache
Quevedo
BN
PFT
BN
PFT
Number of individuals
2850
3650
3000
4750
Simpson_1
-
D
0,793
0,680
0,760
0,614
Multdisciplinary Collaboratve Journal
Multidisciplinary Collaborative Journal
| Vol.0
3
| Núm.0
4
|
Oct
–
Dic
| 202
5
| https://mcjournal.editorialdoso.com
23
Shannon_H
1,591
1,339
1,515
1,182
Evenness_e^H/S
0,982
0,763
0,910
0,652
Equitability_J
0,989
0,832
0,941
0,734
3.4. Maturity index of nematode communities
The maturity index (MI) provided evidence of differences in the conservation status of
the evaluated ecosystems (Figure 2). In La María, the native forest presented a value of
3.02, slightly higher than the teak plantation, which reached 3.00. Although the
difference
is small, it suggests that the native forest maintains marginally more stable nematode
communities compared to the plantation. In contrast, La Represa exhibited clearer
distinctions. The native forest recorded the highest MI value (3.39), while
the teak
plantation obtained 3.19. These results indicate that natural forests harbor nematode
communities with greater ecological stability and reduced signs of disturbance.
Plantations, despite supporting high abundances, reflect a lower successional st
age,
associated with simplified trophic structures and reduced ecological resilience
.
Figure 2.
Values of the Maturity Indexes (MI).
3.5 To taxonomically describe the nematode general present in the study
localities.
Soil analysis in the studied ecosystems revealed the presence of five nematode genera:
Pratylenchus, Meloidogyne, Mononchus, Dorylaimus and Rhabditis. These genera were
consistently found across both natural forests and teak plantations, as well as in the
two
study localities, La María and La Represa (Table
4
). Their ubiquity suggests that these
3,02
3,00
3,39
3,19
2,7
2,8
2,9
3,0
3,1
3,2
3,3
3,4
3,5
Native Forest
Teak Plantation
Native Forest
Teak Plantation
La Maria
The Dam
Maturity Index
Multdisciplinary Collaboratve Journal
Multidisciplinary Collaborative Journal
| Vol.0
3
| Núm.0
4
|
Oct
–
Dic
| 202
5
| https://mcjournal.editorialdoso.com
24
genera constitute a core component of soil nematode communities in tropical
ecosystems of coastal Ecuador.
The functional traits of these genera reflected distinct
feeding strategies that shape
belowground trophic networks. Pratylenchus and Meloidogyne were classified as
herbivores, highlighting their role as potential root parasites with direct implications for
plant health and productivity. By contrast, Mononchus f
unctioned as a predator,
contributing to the regulation of smaller nematodes and other microfauna. Dorylaimus
exhibited an omnivorous feeding habit, which points to its ecological versatility in
exploiting diverse resources. Finally, Rhabditis was bacterio
phagous, directly associated
with the decomposition of organic matter and microbial turnover (Table
5
).
Table
4
.
Nematode genus in two localities and two study areas.
Location
Mocache
Quevedo
Genus
Natural Forest
Plantation
(
T.
grandis
)
Natural
Forest
Plantation
(
T
.
grandis
)
Pratylenchus
X
X
X
X
Meloidogyne
X
X
X
X
Mononchus
X
X
X
X
Dorylaimus
X
X
X
X
Rhabditis
X
X
X
X
Table
5
.
Habits of nematode genus in two localities and two study areas
Genus
Eating Habit
Herbivore
Predator
Omnivore
Bacteriophage
Pratylenchus
X
Meloidogyne
X
Multdisciplinary Collaboratve Journal
Multidisciplinary Collaborative Journal
| Vol.0
3
| Núm.0
4
|
Oct
–
Dic
| 202
5
| https://mcjournal.editorialdoso.com
25
Mononchus
X
Dorylaimus
X
Rhabditis
X
4.
DISCUSSION
Nematodes, as soil invertebrates, play essential roles in decomposition, nutrient cycling,
and energy flow, making them reliable bioindicators of ecosystem functioning
(Lu et
al.,
2020; Neher, 2010)
. In this study, five dominant families (Meloidogyne, Pratylenchus,
Mononchus, Dorylaimus, and Rhabditis
) were identified across natural forests and teak
plantations in Ecuador. Their presence in both ecological systems reflects the
adaptability of nematode taxa to different soil environments, a trend also observed in
global assessments where nematodes persi
st across gradients of disturbance and
vegetation cover
(Van Den H
oogen et
al., 2020)
.
The predominance of herbivorous nematodes (Meloidogyne, Pratylenchus) is consistent
with their known capacity to exploit monoculture systems, often increasing under
simplified vegetation structures
(Habteweld et
al., 2024; Thougnon Islas et
al., 2024)
.
However, o
ur results contrast with studies in other tropical forests where bacterivorous
and omnivorous groups dominate, particularly under higher organic matter availability
and microbial activity. These discrepancies may be explained by differences in soil
fertili
ty, microclimatic conditions, and management history of each system
(Pires et
al.,
2023; S
hao et
al., 2023; Suman Ramteke et
al., 2024)
.
Biodiversity indices provided further insights. Shannon and Simpson values indicated
medium to high diversity across sites, with greater evenness in natural forests than in
plantations. Similar patterns hav
e been reported in Amazonian and Andean ecosystems,
where complex canopy and litter inputs sustain diverse nematode communities, while
managed systems tend to reduce trophic complexity
(Krashevska et
al., 2019;
Tu et
al.,
2024b; Wen et
al., 2025)
. Differences between “La María” and “La Represa” likely reflect
site
-
specific edaphic factors and management intensity, underscoring the sensitivity of
nematodes to local ecological conditions.
The maturity index hig
hlighted clear contrasts between forest systems and plantations.
Higher MI values in natural forests suggest communities dominated by K
-
strategist taxa
typical of stable ecosystems, whereas plantations showed lower values associated with
opportunistic colo
nizers. Comparable results have been documented in tropical and
temperate systems, where forestry practices alter nematode guilds through changes in
organic inputs and disturbance regimes
(Čerevková et
al., 2021; Sánchez
-
Moreno &
Talavera, 2013)
.
Overall, these findings r
einforce the importance of nematode communities as integrative
indicators of soil health. By comparing local results with global evidence, it becomes
evident that forest conservation supports functional diversity and ecosystem stability,
while monocultures
simplify food webs and increase vulnerability. Incorporating
Multdisciplinary Collaboratve Journal
Multidisciplinary Collaborative Journal
| Vol.0
3
| Núm.0
4
|
Oct
–
Dic
| 202
5
| https://mcjournal.editorialdoso.com
26
nematode
-
based metrics into soil monitoring frameworks could enhance sustainable
land management strategies in tropical regions
.
5.
CONCLUSION
This study demonstrates that soil nematode communities are sensitive and robust
indicators of ecosystem condition in tropical environments of Ecuador. The dominance
of phytoparasitic groups such as Meloidogyne and Pratylenchus highlights the persistent
pre
ssure on root systems, while the presence of predatory and bacterivorous taxa
reflects the functional heterogeneity required for soil resilience. Diversity and maturity
indices confirmed that natural forests sustain more stable and balanced communities
com
pared to teak plantations, underscoring the ecological costs of land
-
use
simplification.
Overall, the comparative analysis between natural and managed systems reveals that
nematode
-
based metrics provide a powerful tool to monitor soil health, evaluate
ecol
ogical maturity, and detect early signs of disturbance. These findings reinforce the
importance of conserving native forests to maintain trophic complexity and functional
diversity, while also suggesting that plantation management should integrate biologic
al
indicators to achieve sustainability. Nematode community analysis therefore offers not
only ecological insight but also practical applications for restoration and land
-
use
planning in tropical regions
.
Authors’ Contributions:
Conceptualization, D.V.A.,
C.M.H., and E.B.C.; methodology,
D.V.A., C.M.H., and E.B.C.; investigation, D.V.A., C.M.H., and E.B.C.; validation, C.M.H.;
formal analysis, D.V.A.; resources, D.V.A.; data curation, D.V.A., C.M.H., and E.B.C.;
writing
—
original draft preparation, D.V.A.; w
riting
—
review and editing, D.V.A., C.M.H.,
and E.B.C.; visualization, D.V.A.; supervision, C.M.H.; project administration, D.V.A.;
funding acquisition, D.V.A. All authors have read and agreed to the published version of
the manuscript
.
Funding:
This
research received no external funding.
Acknowledgments:
The authors sincerely thank the Quevedo State Technical
University and the Faculty of Agricultural and Forestry Sciences.
Data Availability Statement:
The data are available upon reasonable request f
rom the
corresponding author:
dvera@uteq.edu.ec
Conflict of Interest:
The authors declare no conflict of interest.
REFERENCES
Afzal, S., &
Ahmad, W. (2024). Temporal and spatial variations of soil nematode
assemblages across distinct forest ecosystems.
Food Webs
,
41
, e00376.
https://doi.org/10.1016/j.fooweb.2024.e00376
Multdisciplinary Collaboratve Journal
Multidisciplinary Collaborative Journal
| Vol.0
3
| Núm.0
4
|
Oct
–
Dic
| 202
5
| https://mcjournal.editorialdoso.com
27
Aransiola, S. A., Babaniyi, B. R., Aransiola, A. B., & Maddela
, N. R. (Eds.). (2024).
Prospects for Soil Regeneration and Its Impact on Environmental Protection
.
Springer Nature Switzerland. https://doi.org/10.1007/978
-
3
-
031
-
53270
-
2
Biswal, D. (2022). Nematodes as Ghosts of Land Use Past: Elucidating the Roles of Soi
l
Nematode Community Studies as Indicators of Soil Health and Land
Management Practices.
Applied Biochemistry and Biotechnology
,
194
(5), 2357
-
2417. https://doi.org/10.1007/s12010
-
022
-
03808
-
9
Čerevková, A., Renčo, M., Miklisová, D., & Gömöryová, E. (2021).
Soil Nematode
Communities in Managed and Natural Temperate Forest.
Diversity
,
13
(7), 327.
https://doi.org/10.3390/d13070327
Cesarz, S., Schulz, A. E., Beugnon, R., & Eisenhauer, N. (2019).
Testing soil nematode
extraction efficiency using different variati
ons of the Baermann
-
funnel method
.
https://doi.org/10.25674/SO91201
Fatima, H., Park, M., Ameen, M., Aslam, I., Athar, T., Shah, S. S. H., Abbasi, G. H., Ali,
M., Waris, A. A., & Arshad, M. N. (2024). Soil Security to Address Potential Global
Issues. En
En
vironmental Nexus for Resource Management
. CRC Press.
Fausak, L. K., Bridson, N., Diaz
-
Osorio, F., Jassal, R. S., & Lavkulich, L. M. (2024). Soil
health
–
a perspective.
Frontiers in Soil Science
,
4
, 1462428.
https://doi.org/10.3389/fsoil.2024.1462428
Furm
anczyk, E. M., Kozacki, D., Ourry, M., Bickel, S., Olimi, E., Masquelier, S., Turci,
S., Bohr, A., Maisel, H., D’Avino, L., & Malusà, E. (2025). An Analysis of Soil
Nematode Communities Across Diverse Horticultural Cropping Systems.
Soil
Systems
,
9
(3), 77.
https://doi.org/10.3390/soilsystems9030077
Ghaderi, R., Hayden, H. L., Jayaramaiah, R. H., Hu, H., & He, J. (2025). An Innovative
Framework Fosters Practical Application of Nematode
‐
Based Indices in Soil
Health Assessment.
European Journal of Soil Science
,
76
(4), e70149.
https://doi.org/10.1111/ejss.70149
Multdisciplinary Collaboratve Journal
Multidisciplinary Collaborative Journal
| Vol.0
3
| Núm.0
4
|
Oct
–
Dic
| 202
5
| https://mcjournal.editorialdoso.com
28
Gonzalez, Y. N., Strauss, S. L., Grabau, Z. J., Bacon, A. R., & Maltais
-
Landry, G. (2025).
Nematodes are a dynamic and novel soil health indicator in a cover cropped tree
system.
Applied Soil Ecology
,
206
, 105917.
https://doi.org/10.1016/j.apsoil.2025.105917
Habteweld, A., Kantor, M., Kantor, C., & Handoo, Z. (2024). Understanding the dynamic
interactions of root
-
knot nematodes and their host: Role of plant growth
promoting bacteria and abiotic factors.
Fr
ontiers in Plant Science
,
15
, 1377453.
https://doi.org/10.3389/fpls.2024.1377453
Kleemann, J., Koo, H., Hensen, I., Mendieta
-
Leiva, G., Kahnt, B., Kurze, C., Inclan, D.
J., Cuenca, P., Noh, J. K., Hoffmann, M. H., Factos, A., Lehnert, M., Lozano, P.,
& Für
st, C. (2022). Priorities of action and research for the protection of
biodiversity and ecosystem services in continental Ecuador.
Biological
Conservation
,
265
, 109404. https://doi.org/10.1016/j.biocon.2021.109404
Koo, H., Kleemann, J., Cuenca, P., Noh, J.
K., & Fürst, C. (2024). Implications of
landscape changes for ecosystem services and biodiversity: A national
assessment in Ecuador.
Ecosystem Services
,
69
, 101652.
https://doi.org/10.1016/j.ecoser.2024.101652
Krashevska, V., Kudrin, A. A., Widyastuti, R.
, & Scheu, S. (2019). Changes in Nematode
Communities and Functional Diversity With the Conversion of Rainforest Into
Rubber and Oil Palm Plantations.
Frontiers in Ecology and Evolution
,
7
, 487.
https://doi.org/10.3389/fevo.2019.00487
Lazarova, S., Coyne,
D., G. Rodríguez, M. G., Peteira, B., & Ciancio, A. (2021).
Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture
—
A Review.
Diversity
,
13
(2), 64. https://doi.org/10.3390/d13020064
Lehun, A. L., Duarte, G. S. C., & Takemoto, R. M.
(2023). Nematodes as indicators of
environmental changes in a river with different levels of anthropogenic impact.
Anais da Academia Brasileira de Ciências
,
95
(4), e20200307.
https://doi.org/10.1590/0001
-
3765202320200307
Multdisciplinary Collaboratve Journal
Multidisciplinary Collaborative Journal
| Vol.0
3
| Núm.0
4
|
Oct
–
Dic
| 202
5
| https://mcjournal.editorialdoso.com
29
Li, G., Liu, T., Whalen
, J. K., & Wei, Z. (2024). Nematodes: An overlooked tiny engineer
of plant health.
Trends in Plant Science
,
29
(1), 52
-
63.
https://doi.org/10.1016/j.tplants.2023.06.022
López
-
Tobar, R., Herrera
-
Feijoo, R. J., García
-
Robredo, F., Mateo, R. G., & Torres, B.
(
2024). Timber harvesting and conservation status of forest species in the
Ecuadorian Amazon.
Frontiers in Forests and Global Change
,
7
, 1389852.
https://doi.org/10.3389/ffgc.2024.1389852
Lu, Q., Liu, T., Wang, N., Dou, Z., Wang, K., & Zuo, Y. (2020). A rev
iew of soil nematodes
as biological indicators for the assessment of soil health.
Frontiers of Agricultural
Science and Engineering
,
7
(3), 275. https://doi.org/10.15302/J
-
FASE
-
2020327
Neher, D. A. (2010). Ecology of Plant and Free
-
Living Nematodes in Natur
al and
Agricultural Soil.
Annual Review of Phytopathology
,
48
(1), 371
-
394.
https://doi.org/10.1146/annurev
-
phyto
-
073009
-
114439
Noh, J. K., Echeverria, C., Gaona, G., Kleemann, J., Koo, H., Fürst, C., & Cuenca, P.
(2022). Forest Ecosystem Fragmentation in E
cuador: Challenges for Sustainable
Land Use in the Tropical Andean.
Land
,
11
(2), 287.
https://doi.org/10.3390/land11020287
Pires, D., Orlando, V., Collett, R. L., Moreira, D., Costa, S. R., & Inácio, M. L. (2023).
Linking Nematode Communities and Soil Heal
th under Climate Change.
Sustainability
,
15
(15), 11747. https://doi.org/10.3390/su151511747
Robinson, J. M., Liddicoat, C., Muñoz
-
Rojas, M., & Breed, M. F. (2024). Restoring soil
biodiversity.
Current Biology
,
34
(9), R393
-
R398.
https://doi.org/10.1016/j.cu
b.2024.02.035
Sánchez
-
Moreno, S., & Talavera, M. (2013). Los nematodos como indicadores
ambientales en agroecosistemas.
Ecosistemas
,
22
(1), 50
-
55.
https://doi.org/10.7818/ECOS.2013.22
-
1.09
Multdisciplinary Collaboratve Journal
Multidisciplinary Collaborative Journal
| Vol.0
3
| Núm.0
4
|
Oct
–
Dic
| 202
5
| https://mcjournal.editorialdoso.com
30
Semprucci, F., Boufahja, F., Grassi, E., & Al
‐
Zharani
, M. (2025). Review Article: The
multifaceted role of nematodes in advancing the One Health approach.
Annals of
Applied Biology
, aab.70038. https://doi.org/10.1111/aab.70038
Shao, Y., Wang, Z., Liu, T., Kardol, P., Ma, C., Hu, Y., Cui, Y., Zhao, C., Zhang,
W., Guo,
D., & Fu, S. (2023). Drivers of nematode diversity in forest soils across climatic
zones.
Proceedings of the Royal Society B: Biological Sciences
,
290
(1994),
20230107. https://doi.org/10.1098/rspb.2023.0107
Sieriebriennikov, B., Ferris, H., & De
Goede, R. G. M. (2014). NINJA: An automated
calculation system for nematode
-
based biological monitoring.
European Journal
of Soil Biology
,
61
, 90
-
93. https://doi.org/10.1016/j.ejsobi.2014.02.004
Suman Ramteke, Meenakshi Dewangan, Majid Ali, & Sanjay Thiske
. (2024). A brief
review on biodiversity of soil nematode.
World Journal of Advanced Research
and Reviews
,
24
(1), 359
-
372. https://doi.org/10.30574/wjarr.2024.24.1.3008
Thougnon Islas, A. J., Chaves, E., Carmona, D., San Martino, S., & Mondino, E. (2024).
Caracterización de la comunidad de nematodos de suelo encuatro sistemas
productivos del sudeste bonaerense, Argentina.
Ecología Austral
, 240
-
255.
https://doi.org/10.25260/EA.24.34.2.0.2237
Tu, C., Zhang, A., Luo, R., Qiang, W., Zhang, Y., Pang, X., & Kuzya
kov, Y. (2024a).
Linking nematode trophic diversity to plantation identity and soil nutrient cycling.
Geoderma
,
448
, 116945. https://doi.org/10.1016/j.geoderma.2024.116945
Tu, C., Zhang, A., Luo, R., Qiang, W., Zhang, Y., Pang, X., & Kuzyakov, Y. (2024b).
Linking nematode trophic diversity to plantation identity and soil nutrient cycling.
Geoderma
,
448
, 116945. https://doi.org/10.1016/j.geoderma.2024.116945
Van Den Hoogen, J., Geisen, S., Wall, D. H., Wardle, D. A., Traunspurger, W., De
Goede, R. G. M., Ada
ms, B. J., Ahmad, W., Ferris, H., Bardgett, R. D.,
Bonkowski, M., Campos
-
Herrera, R., Cares, J. E., Caruso, T., De Brito Caixeta,
L., Chen, X., Costa, S. R., Creamer, R., Da Cunha E Castro, J. M., … Crowther,
T. W. (2020). A global database of soil nematod
e abundance and functional
Multdisciplinary Collaboratve Journal
Multidisciplinary Collaborative Journal
| Vol.0
3
| Núm.0
4
|
Oct
–
Dic
| 202
5
| https://mcjournal.editorialdoso.com
31
group composition.
Scientific Data
,
7
(1), 103. https://doi.org/10.1038/s41597
-
020
-
0437
-
3
Vélez, S., & Guzmán, A. (2022). Identification methods for root
-
knot nematode
Meloidogyne.
Manglar
,
19
(2), 209
-
215.
https://doi.org/10.17268
/manglar.2022.026
Voroney, R. P., Heck, R. J., & Kuzyakov, Y. (2024). The habitat of the soil biota. En
Soil
Microbiology, Ecology and Biochemistry
(pp. 13
-
40). Elsevier.
https://doi.org/10.1016/B978
-
0
-
12
-
822941
-
5.00002
-
8
Wall, D. H., Nielsen, U. N., & Six
, J. (2015). Soil biodiversity and human health.
Nature
,
528
(7580), 69
-
76. https://doi.org/10.1038/nature15744
Wang, J., Liu, T., Zhao, J., Ning, C., Chen, S., Zhang, X., Liu, G., Kuzyakov, Y., & Yan,
W. (2024). Energy flows through nematode food webs depe
nding on the soil
carbon and nitrogen contents after forest conversion.
Science of The Total
Environment
,
935
, 173322. https://doi.org/10.1016/j.scitotenv.2024.173322
Wen, H., Van Meerbeek, K., Zhang, H., Peng, Y., Yue, K., Ni, X., Qiu, D., Chen, Z., Bol,
R., & Wu, F. (2025). Loss of soil fauna following conversion of subtropical natural
forests.
Soil Ecology Letters
,
7
(3), 250315. https://doi.org/10.1007/s42832
-
025
-
0315
-
1
Wilschut, R. A., & Geisen, S. (2021). Nematodes as Drivers of Plant Performance in
Na
tural Systems.
Trends in Plant Science
,
26
(3), 237
-
247.
https://doi.org/10.1016/j.tplants.2020.10.006
Xing, W., Lu, X., Niu, S., Chen, D., Wang, J., Liu, Y., Wang, B., Zhang, S., Li, Z., Yao,
X., Yu, Q., & Tian, D. (2022). Global patterns and drivers of so
il nematodes in
response to nitrogen enrichment.
CATENA
,
213
, 106235.
https://doi.org/10.1016/j.catena.2022.106235
Zhang, C., Wright, I. J., Nielsen, U. N., Geisen, S., & Liu, M. (2024). Linking nematodes
and ecosystem function: A trait
-
based framework.
Tr
ends in Ecology & Evolution
,
39
(7), 644
-
653. https://doi.org/10.1016/j.tree.2024.02.002
Multdisciplinary Collaboratve Journal
Multidisciplinary Collaborative Journal
| Vol.0
3
| Núm.0
4
|
Oct
–
Dic
| 202
5
| https://mcjournal.editorialdoso.com
32
Zheng, F., Tang, M., Gao, J., Guo, X., Zhu, D., Yang, X., & Chen, B. (2024). Contrasting
patterns and drivers of soil nematode community in regions with different
urban
ization levels.
Applied Soil Ecology
,
201
, 105491.
https://doi.org/10.1016/j.apsoil.2024.105491
Zhu, B., Wan, B., Liu, T., Zhang, C., Cheng, L., Cheng, Y., Tian, S., Chen, X., Hu, F.,
Whalen, J. K., & Liu, M. (2023). Biochar enhances multifunctionality by
increasing
the uniformity of energy flow through a soil nematode food web.
Soil Biology and
Biochemistry
,
183
, 109056. https://doi.org/10.1016/j.soilbio.2023.109056