Composición química, pretratamiento, valorización y empleo de suero de queso y sus subproductos como sustrato en fermentaciones: Una revisión global
DOI:
https://doi.org/10.70881/mcj/v3/n2/50Palabras clave:
Suero de queso, valorización, fermentación, microorganismos, subproductosResumen
El suero de queso es un líquido amarillento resultante de la co-precipitación y remoción de la caseína de la leche en el proceso de producción del queso. En la actualidad se considera un contaminante importante debido a su elevada carga orgánica, lo cual hace que a menudo se considera un residuo. Sin embargo, el suero de queso presenta un elevado valor nutricional que permite ser explotado como sustrato para obtener productos de alto valor agregado, siendo una vía económica para lograr este objetivo la biotransformación del suero de queso en productos valiosos específicos, tanto individuales (biohidrógeno, bioetanol, ácido láctico, etc.) como la formulación de alimentos y bebidas (kéfir), a partir de la fermentación con bacterias, levaduras u hongos. El presente artículo de revisión tiene como objetivo recopilar y compendiar la información publicada actualmente disponible con respecto a la composición química del suero de queso, su uso como sustrato en fermentaciones, sus procesos de pretratamiento, su valorización como materia prima a escala industrial, así como el aprovechamiento de los derivados del suero de queso para obtener productos químicos específicos por medio de la fermentación microbiana.
Descargas
Referencias
Ahmad, M. S., AbdEl-Salam, B. A., Yaser, M. M., & Taha, S. S. (2018). Optimization and characterization of bacterial proteinase enzyme using whey as a fermentation medium. Journal of Advanced Pharmacy Education & Research, 8(2), 63-76. https://japer.in/article/optimization-and-characterization-of-bacterial-proteinase-enzyme-using-whey-as-a-fermentation-medium
Alam, S., Stevens, D., & Bajpai, R. (1988). Production of butyric acid by batch fermentation of cheese whey with Clostridium beijerinckii. Journal of Industrial Microbiology, 2, 359-364. https://doi.org/10.1007/BF01569574 DOI: https://doi.org/10.1007/BF01569574
Altiok, D., Tokatli, F., & Harsa, S. (2006). Kinetic modelling of lactic acid production from whey by Lactobacillus casei (NRRL B-441). Journal of Chemical Technology and Biotechnology, 81, 1191-1197. https://doi.org/10.1002/jctb.1512 DOI: https://doi.org/10.1002/jctb.1512
Antonelli, J., Lindino, C. A., Azevedo, J. C. R. d., Souza, S. N. M. d., Cremonez, P. A., & Rossi, E. (2016). Biogas production by the anaerobic digestion of whey. Revista de Ciências Agrárias, 39(3), 463-467. http://dx.doi.org/10.19084/RCA15087 DOI: https://doi.org/10.19084/RCA15087
Antonopoulou, G., Stamatelatou, K., Venetsaneas, N., Kornaros, M., & Lyberatos, G. (2008). Biohydrogen and Methane Production from Cheese Whey in a Two-Stage Anaerobic Process. Industrial & Engineering Chemistry Research, 47(15), 5227-5233. https://doi.org/10.1021/ie071622x DOI: https://doi.org/10.1021/ie071622x
Arias, A., Feijoo, G., & Moreira, M. T. (2021). Process and environmental simulation in the validation of the biotechnological production of nisin from waste. Biochemical Engineering Journal, 174, 108105. https://doi.org/10.1016/j.bej.2021.108105 DOI: https://doi.org/10.1016/j.bej.2021.108105
Azbar, N., Dokgöz, F. T. Ç., Keskin, T., Korkmaz, K. S., & Syed, H. M. (2009). Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. International Journal of Hydrogen Energy, 34, 7441-7447. https://doi.org/10.1016/j.ijhydene.2009.04.032 DOI: https://doi.org/10.1016/j.ijhydene.2009.04.032
Basak, B., Fatima, A., Jeon, B.-H., Ganguly, A., Chatterjee, P. K., & Dey, A. (2018). Process kinetic studies of biohydrogen production by co-fermentation of fruit-vegetable wastes and cottage cheese whey. Energy for Sustainable Development, 47, 39-52. https://doi.org/10.1016/j.esd.2018.08.004 DOI: https://doi.org/10.1016/j.esd.2018.08.004
Belloso-Morales, G., & Hernández-Sánchez, H. (2003). Manufacture of a beverage from cheese whey using a “tea fungus” fermentation. Revista Latinoamericana de Microbiología, 45(1-2), 5-11. https://pubmed.ncbi.nlm.nih.gov/17061515/
Blanco, V. M. C., Oliveira, G. H. D., & Zaiat, M. (2019). Dark fermentative biohydrogen production from synthetic cheese whey in an anaerobic structured-bed reactor: Performance evaluation and kinetic modeling. Renewable Energy, 139, 1310-1319. https://doi.org/10.1016/j.renene.2019.03.029 DOI: https://doi.org/10.1016/j.renene.2019.03.029
Carvalheira, M., Hilliou, L., Oliveira, C. S. S., Guarda, E. C., & Reis, M. A. M. (2022). Polyhydroxyalkanoates from industrial cheese whey: Production and characterization of polymers with differing hydroxyvalerate content. Current Research in Biotechnology, 4, 211-220. https://doi.org/10.1016/j.crbiot.2022.03.004 DOI: https://doi.org/10.1016/j.crbiot.2022.03.004
Chairunnisa, H., Balia, R. L., & Wulandari, E. (2019). Chemical and Microbiological Characteristics of Fermented Cheese Whey Beverages with Soymilk Powder Addition. IOP Conf. Series: Earth and Environmental Science, 334, 012043. https://doi.org/10.1088/1755-1315/334/1/012043 DOI: https://doi.org/10.1088/1755-1315/334/1/012043
Chen-Jen Wang, Yong Jayanata, a., & Bajpai, R. K. (1987). Effect of Multiple Substrates in Ethanol Fermentations from Cheese Whey. Journal of Fermentation Technology, 65(3), 249-253. https://doi.org/10.1016/0385-6380(87)90084-7 DOI: https://doi.org/10.1016/0385-6380(87)90084-7
Chicaiza-Ortiz, C., Peñafiel-Arcos, P., Herrera-Feijoo, R. J., Ma, W., Logroño, W., Tian, H., & Yuan, W. (2024). Waste-to-Energy technologies for municipal solid waste management: Bibliometric review, life cycle assessment, and energy potential case study. Journal of Cleaner Production, 480, 143993. doi:https://doi.org/10.1016/j.jclepro.2024.143993 DOI: https://doi.org/10.1016/j.jclepro.2024.143993
Coelho, R. J. S., Gabardo, S., Marim, A. V. C., Bolognesi, L. S., Filho, N. J. P., & Ayub, M. A. Z. (2023). Porungo cheese whey: a new substrate to produce β-galactosidase. Annals of the Brazilian Academy of Sciences, 95(4), e20200483. https://doi.org/10.1590/0001-3765202320200483 DOI: https://doi.org/10.1590/0001-3765202320200483
Colognesi, G. d. O., Santos, L. F. d., Gomez, R. J. H. C., Roig, S. M., & Suguimoto, H. H. (2015). Ethanol production potential of Saccharomyces fragilis IZ 275 using cheese whey powder solution. AGROCIENCIA, 49(3), 291-298. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952015000300005
Costa, J. P. V. d., Oliveira, C. F. D. d., & Vendruscolo, F. (2020). Cheese whey as a potential substrate for Monascus pigments production. AIMS Agriculture and Food, 5(4), 785-798. https://doi.org/10.3934/agrfood.2020.4.785 DOI: https://doi.org/10.3934/agrfood.2020.4.785
Cota-Navarro, C. B., Carrillo-Reyes, J., Davila-Vazquez, G., Alatriste-Mondragón, F., & Razo-Flores, E. (2011). Continuous hydrogen and methane production in a two-stage cheese whey fermentation system. Water Science & Technology, 64(2), 367-374. https://doi.org/10.2166/wst.2011.631 DOI: https://doi.org/10.2166/wst.2011.631
Cunha, J. T., Gomes, D. G., Romaní, A., Inokuma, K., Hasunuma, T., Kondo, A., & Domingues, L. (2021). Cell surface engineering of Saccharomyces cerevisiae for simultaneous valorization of corn cob and cheese whey via ethanol production. Energy Conversion and Management, 243, 114359. https://doi.org/10.1016/j.enconman.2021.114359 DOI: https://doi.org/10.1016/j.enconman.2021.114359
Das, B., Das, M., Bhattacharjee, S., & Bhattacharjee, C. (2017). Ethanol production from deproteinized cheese whey powder in a batch fermentation process: optimization of process and kinetic modelling. Desalination and Water Treatment, 64, 198-206. https://doi.org/10.5004/dwt.2017.20238 DOI: https://doi.org/10.5004/dwt.2017.20238
Davila-Vazquez, G., Alatriste-Mondragón, F., León-Rodríguez, A. d., & Razo-Flores, E. (2008). Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose: Influence of initial substrate concentration and pH. International Journal of Hydrigen Energy, 332008, 4989-4997. https://doi.org/10.1016/j.ijhydene.2008.06.065 DOI: https://doi.org/10.1016/j.ijhydene.2008.06.065
Debowski, M., Korzeniewska, E., Filipkowska, Z., Zielinski, M., & Kwiatkowski, R. (2014). Possibility of hydrogen production during cheese whey fermentation process by different strains of psychrophilic bacteria. International Journal of Hydrogen Energy, 39, 1972-1978.http://dx.doi.org/10.1016/j.ijhydene.2013.11.082 DOI: https://doi.org/10.1016/j.ijhydene.2013.11.082
Delmoitié, B., Sakarika, M., Rabaey, K., Wever, H. D., & Regueira, A. (2025). Tailoring non-axenic lactic acid fermentation from cheese whey permeate targeting a flexible lactic acid platform. Journal of Environmental Management, 373, 123529. https://doi.org/10.1016/j.jenvman.2024.123529 DOI: https://doi.org/10.1016/j.jenvman.2024.123529
Díez-Antolínez, R., Hijosa-Valsero, M., Paniagua-Garcíaa, A. I., & Gómez, X. (2016). Very-high-gravity Fermentation of Non-supplemented Cheese Whey Permeate by Immobilized Kluyveromyces marxianus. Chemical Engineering Transactions, 49, 529-534. https://doi.org/10.3303/CET1649089
Domingos, J. M. B., Puccio, S., Martinez, G. A., Amaral, N., Reis, M. A. M., Bandini, S., Fava, F., & Bertin, L. (2018). Cheese whey integrated valorisation: Production, concentration and exploitation of carboxylic acids for the production of polyhydroxyalkanoates by a fed-batch culture. Chemical Engineering Journal, 336, 47-53. https://doi.org/10.1016/j.cej.2017.11.024 DOI: https://doi.org/10.1016/j.cej.2017.11.024
Dosuky, A. S., Elsayed, T. R., Yousef, E. T., Barakat, O. S., & Nasr, N. F. (2022). Isolation, identification, and application of lactic acid-producing bacteria using salted cheese whey substrate and immobilized cells technology. Journal of Genetic Engineering and Biotechnology, 20, 26. https://doi.org/10.1186/s43141-022-00316-5 DOI: https://doi.org/10.1186/s43141-022-00316-5
Dragone, G., Mussatto, S. I., Silva, J. B. A. e., & Teixeira, J. A. (2011). Optimal fermentation conditions for maximizing the ethanol production by Kluyveromyces fragilis from cheese whey powder. Biomass and Bioenergy, 35, 1977-1982. https://doi.org/10.1016/j.biombioe.2011.01.045 DOI: https://doi.org/10.1016/j.biombioe.2011.01.045
El-Holi, M. A., & Al-Delaimy, K. S. (2003). Citric acid production from whey with sugars and additives by Aspergillus niger. Frontiers of Agriculture and Food Technology, 2(10), 001-004. https://doi.org/10.5897/AJB2003.000-1073 DOI: https://doi.org/10.5897/AJB2003.000-1073
El-Samragy, Y. A., Khorshid, M. A., Foda, M. I., & Shehata, A. E. (1996). Effect of fermentation conditions on the production of citric acid from cheese whey by Aspergillus niger. International Journal of Food Microbiology, 29, 411-416. https://doi.org/10.1016/0168-1605(95)00072-0 DOI: https://doi.org/10.1016/0168-1605(95)00072-0
Ellis, J. T., Sims, R. C., & Miller, C. D. (2014). Microbial bioproducts from cheese whey through fermentation with wastewater sludge Clostridium isolates. Canadian Journal of Microbiology, 60, 431-435. https://dx.doi.org/10.1139/cjm-2013-0803 DOI: https://doi.org/10.1139/cjm-2013-0803
Farkas, C., Rezessy-Szabó, J. M., Gupta, V. K., Bujna, E., Pham, T. M., Pásztor-Huszár, K., Friedrich, L., Bhat, R., Thakur, K. V., & Nguyen, Q. D. (2019). Batch and Fed-Batch Ethanol Fermentation of Cheese-Whey Powder with Mixed Cultures of Different Yeasts. Energies, 12, 4495. https://doi.org/10.3390/en12234495 DOI: https://doi.org/10.3390/en12234495
Gao, X., Guo, Q., Li, B., & Mei, J. (2018). Microbiological characterisation of whey-based kefir beverages after Bod ljong cheese-making at different fermentation temperature. IOP Conf. Series: Materials Science and Engineering, 392, 052010. https://doi.org/10.1088/1757-899X/392/5/052010 DOI: https://doi.org/10.1088/1757-899X/392/5/052010
Ghaly, A. E., Tango, M. S. A., & Adams, M. A. (2003). Enhanced Lactic Acid Production from Cheese Whey with Nutrient Supplement Addition. Agricultural Engineering International: the CIGR Journal of Scientific Research and Development, 02(009), 1-20. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f1351a612d599be368f71c8d9ae45b002b72b5c5
Giorgi, S. D., Raddadi, N., Fabbri, A., Toschi, T. G., & Fava, F. (2018). Potential use of ricotta cheese whey for the production of lactobionic acid by Pseudomonas taetrolens strains. New BIOTECHNOLOGY, 42, 71-76. https://doi.org/10.1016/j.nbt.2018.02.010 DOI: https://doi.org/10.1016/j.nbt.2018.02.010
Gómez, J. A., Sánchez, Ó. J., & Correa, L. F. (2019). Technoeconomic and Environmental Evaluation of Cheesemaking Waste Valorization Through Process Simulation Using SuperPro Designer. Waste and Biomass Valorization, 1-21. https://doi.org/10.1007/s12649-019-00833-4 DOI: https://doi.org/10.1007/s12649-019-00833-4
Guimarães, P. M. R., Teixeira, J. A., & Domingues, L. (2010). Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnology Advances, 28, 375-384. https://doi.org/10.1016/j.biotechadv.2010.02.002 DOI: https://doi.org/10.1016/j.biotechadv.2010.02.002
Ibarruri, J., & Hernández, I. (2019). Valorization of cheese whey and orange molasses for fungal biomass production by submerged fermentation with Rhizopus sp. Bioprocess and Biosystems Engineering, 1-16. https://doi.org/10.1007/s00449-019-02127-4 DOI: https://doi.org/10.1007/s00449-019-02127-4
Kargi, F., Eren, N. S., & Ozmihci, S. (2012). Hydrogen gas production from cheese whey powder (CWP) solution by thermophilic dark fermentation. International Journal of Hydrogen Energy, 37, 2260-2266. https://doi.org/10.1016/j.ijhydene.2011.11.018 DOI: https://doi.org/10.1016/j.ijhydene.2011.11.018
Kargi, F., & Ozmihci, S. (2006). Utilization of cheese whey powder (CWP) for ethanol fermentations: Effects of operating parameters. Enzyme and Microbial Technology, 38, 711-718. https://doi.org/10.1016/j.enzmictec.2005.11.006 DOI: https://doi.org/10.1016/j.enzmictec.2005.11.006
Kaya, B., Wijayarathna, E. R. K. B., Yüceer, Y. K., Agnihotri, S., Taherzadeh, M. J., & Sar, T. (2024). The use of cheese whey powder in the cultivation of protein-rich filamentous fungal biomass for sustainable food production. Frontiers in Sustainable Food Systems, 8, 1386519. https://doi.org/10.3389/fsufs.2024.1386519 DOI: https://doi.org/10.3389/fsufs.2024.1386519
Kolaei, M. V., Karimzadeh, R., Shojaosadati, S. A., & Towfighi, J. (2007). Modeling of single cell protein production from cheese whey using tanks-in-series model. Iranian Journal of Biotechnology, 5(2), 87-92.
Lagoa-Costa, B., Kennes, C., & Veiga, M. C. (2020). Cheese whey fermentation into volatile fatty acids in an anaerobic sequencing batch reactor. Bioresource Technology, 308, 123226. https://doi.org/10.1016/j.biortech.2020.123226 DOI: https://doi.org/10.1016/j.biortech.2020.123226
Lagoa-Costa, B., Kennes, C., & Veiga, M. C. (2023). Exploiting Cheese Whey for Efficient Selection of Polyhydroxyalkanoates-Storing Bacteria. Fermentation, 9, 574. https://doi.org/10.3390/fermentation9060574 DOI: https://doi.org/10.3390/fermentation9060574
Lappa, I. K., Papadaki, A., Kachrimanidou, V., Terpou, A., Koulougliotis, D., Eriotou, E., & Kopsahelis, N. (2019). Cheese Whey Processing: Integrated Biorefinery Concepts and Emerging Food Applications. Foods, 8, 347. https://doi.org/10.3390/foods8080347 DOI: https://doi.org/10.3390/foods8080347
Lavari, L., Páez, R., Cuatrin, A., Reinheimer, J., & Vinderola, G. (2017). Use of cheese whey for biomass production and spray drying of probiotic lactobacilli. Journal of Dairy Research, 1-8. https://doi.org/10.1017/S0022029914000156 DOI: https://doi.org/10.1017/S0022029914000156
Lech, M. (2020). Optimisation of protein-free waste whey supplementation used for the industrial microbiological production of lactic acid. Biochemical Engineering Journal, 157, 107531. https://doi.org/10.1016/j.bej.2020.107531 DOI: https://doi.org/10.1016/j.bej.2020.107531
Lembo, G., Rosa, S., Miritana, V. M., Marone, A., Massini, G., Fenice, M., & Signorini, A. (2021). Thermophilic Anaerobic Digestion of Second Cheese Whey: Microbial Community Response to H2 Addition in a Partially Immobilized Anaerobic Hybrid Reactor. Processes, 9, 43. https://doi.org/10.3390/pr9010043 DOI: https://doi.org/10.3390/pr9010043
Longhi, L. G. S., Luvizetto, D. J., Ferreira, L. S., Rech, R., Ayub, M. A. Z., & Secchi, A. R. (2004). A growth kinetic model of Kluyveromyces marxianus cultures on cheese whey as substrate. Journal of Industrial Microbiology and Biotechnology, 31, 35-40. https://doi.org/10.1007/s10295-004-0110-4 DOI: https://doi.org/10.1007/s10295-004-0110-4
Luongo, V., Policastro, G., Ghimire, A., Pirozzi, F., & Fabbricino, M. (2019). Repeated-Batch Fermentation of Cheese Whey for Semi-Continuous Lactic Acid Production Using Mixed Cultures at Uncontrolled pH. Sustainability, 11, 3330. https://doi.org/10.3390/su11123330 DOI: https://doi.org/10.3390/su11123330
Mabrouki, J., Abbassi, M. A., Khiari, B., Jellali, S., Zorpas, A. A., & Jeguirim, M. (2022). The dairy biorefinery: Integrating treatment process for Tunisian cheese whey valorization. Chemosphere, 293, 133567. https://doi.org/10.1016/j.chemosphere.2022.133567 DOI: https://doi.org/10.1016/j.chemosphere.2022.133567
Maestre, K. L., Passos, F. R. d., Triques, C. C., Fiorentin-Ferrari, L. D., Slusarski-Santana, V., Garcia, H. A., Silva, E. A. D., & Fiorese, M. L. (2021). Cheese whey permeate valorization using sequential fermentations: case study performed in the Western Region of Paraná. Research, Society and Development, 10(13), e212101321082. http://dx.doi.org/10.33448/rsd-v10i13.21082 DOI: https://doi.org/10.33448/rsd-v10i13.21082
Magalhaes, K. T., Dias, D. R., Pereira, G. V. d. M., Oliveira, J. M., Domingues, L., Teixeira, J. A., Silva, J. B. A. e., & Schwan, R. F. (2011). Chemical composition and sensory analysis of cheese whey-based beverages using kefir grains as starter culture. International Journal of Food Science and Technology, 46, 871-878. https://doi.org/10.1111/j.1365-2621.2011.02570.x DOI: https://doi.org/10.1111/j.1365-2621.2011.02570.x
Magalhães, K. T., Giuliano Dragone b, Pereira, G. V. d. M., Oliveira, J. M., Domingues, L., Teixeira, J. A., Silva, J. B. A. e., & Schwan, R. F. (2011). Comparative study of the biochemical changes and volatile compound formations during the production of novel whey-based kefir beverages and traditional milk kefir. Food Chemistry, 126, 249-253. https://doi.org/10.1016/j.foodchem.2010.11.0 DOI: https://doi.org/10.1016/j.foodchem.2010.11.012
Magalhães, K. T., Pereira, M. A., Nicolau, A., Dragone, G., Domingues, L., Teixeira, J. A., Silva, J. B. A., & Schwan, R. F. (2010). Production of fermented cheese whey-based beverage using kefir grains as starter culture: Evaluation of morphological and microbial variations. Bioresource Technology, 101, 8843-8850. https://doi.org/10.1016/j.biortech.2010.06.083 DOI: https://doi.org/10.1016/j.biortech.2010.06.083
Manucci, F. (2009). Enzymatic synthesis of Galactooligosaccharides from Whey Permeate. (PhD Thesis), Dublin Institute of Technology, Dublin, Ireland.
Mazorra-Manzano, M. A., Robles-Porchas, G. R., González-Velázquez, D. A., Torres-Llanez, M. J., Martínez-Porchas, M., García-Sifuentes, C. O., González-Córdova, A. F., & Vallejo-Córdoba, B. (2020). Cheese Whey Fermentation by Its Native Microbiota: Proteolysis and Bioactive Peptides Release with ACE-Inhibitory Activity. Fermentation, 6, 19. https://doi.org/10.3390/fermentation6010019 DOI: https://doi.org/10.3390/fermentation6010019
Mediboyina, M. K., Holden, N. M., O’Neill, S., Routledge, K., Morrissey, B., Lawless, F., & Murphy, F. (2021). Upscale fermenter design for lactic acid production from cheese whey permeate focusing on impeller selection and energy optimization. J Food Sci Technol, 1-11. https://doi.org/10.1007/s13197-021-05239-6 DOI: https://doi.org/10.1007/s13197-021-05239-6
Mendonça, C., & Venancio, A. (2005). Fate of aflatoxin M1 in cheese whey processing. Journal of the Science of Food and Agriculture, 85, 2067-2070. https://doi.org/10.1002/jsfa.2218 DOI: https://doi.org/10.1002/jsfa.2218
Mollea, C., Marmo, L., & Bosco, F. (2013). Chapter 24. Valorisation of Cheese Whey, a By-Product from the Dairy Industry. pp. 549-588. http://dx.doi.org/10.5772/53159 DOI: https://doi.org/10.5772/53159
Montecchio, D., Yuan, Y., & Malpei, F. (2018). Hydrogen production dynamic during cheese whey Dark Fermentation: New insights from modelization International Journal of Hydrogen Energy, 43, 17588-17601. https://doi.org/10.1016/j.ijhydene.2018.07.146 DOI: https://doi.org/10.1016/j.ijhydene.2018.07.146
Morales, J., Choi, J.-S., & Kim, D.-S. (2006). Production Rate of Propionic Acid in Fermentation of Cheese Whey with Enzyme Inhibitors. Environmental Progress, 25(3), 228-234. https://doi.org/10.1002/ep.10153 DOI: https://doi.org/10.1002/ep.10153
Moreno, R., Escapa, A., Cara, J., Carracedo, B., & Gómez, X. (2015). A two-stage process for hydrogen production from cheese whey: Integration of dark fermentation and biocatalyzed electrolysis. International Journal of Hydrogen Energy, 40, 168-175. http://dx.doi.org/10.1016/j.ijhydene.2014.10.120 DOI: https://doi.org/10.1016/j.ijhydene.2014.10.120
Murari, C. S., Silva, D. C. M. N. d., Silva, B. L. d., & Bianchi, V. L. D. (2017). Influence of the nutrient concentrations of whey on ethanol and biomass production and COD reduction. Acta Scientiarum. Technology, 39, 533-541. https://doi.org/10.4025/actascitechnol.v39i5.29518 DOI: https://doi.org/10.4025/actascitechnol.v39i5.29518
Narala, V. R., Zagorska, J., Sarenkova, I., Ciprovica, I., & Majore, K. (2022). Acid Whey Valorization for Biotechnological Lactobionic Acid Bio-production. Journal of Human, Earth, and Future, 3(Special Issue), 46-55. http://dx.doi.org/10.28991/HEF-SP2022-01-04 DOI: https://doi.org/10.28991/HEF-SP2022-01-04
Németh, Á., & Kaleta, Z. (2015). Complex utilization of dairy waste (whey) in Biorefinery. WSEAS Transactions on Environment and Development, 11, 80-88. https://www.wseas.org/multimedia/journals/environment/2015/a1872601-220.pdf
Nursiwi, A., Nurhartadi, E., Utami, R., Sari, A. M., Laksono, P. W., & Aprilia, E. N. (2017). Characteristic of Fermented Whey Beverage with Addition of Tomato Juice (Lycopersicum esculentum). IOP Conf. Series: Materials Science and Engineerin1g2, 193, 012009. https://doi.org/10.1088/1757-899X/193/1/012009 DOI: https://doi.org/10.1088/1757-899X/193/1/012009
Oliveira, D. R., Lopes, A. C. A., Pereira, R. A., Cardoso, P. G., & Duarte, W. F. (2019). Selection of potentially probiotic Kluyveromyces lactis for the fermentation of cheese whey–based beverage. Annals of Microbiology, 1-12. https://doi.org/10.1007/s13213-019-01518-y DOI: https://doi.org/10.1007/s13213-019-01518-y
Osorio-González, C. S., Gómez-Falcon, N., Brar, S. K., & Ramírez, A. A. (2022). Cheese Whey as a Potential Feedstock for Producing Renewable Biofuels: A Review. Energies, 15, 6828. https://doi.org/10.3390/en15186828 DOI: https://doi.org/10.3390/en15186828
Ozmihci, S., & Kargi, F. (2007). Comparison of yeast strains for batch ethanol fermentation of cheese–whey powder (CWP) solution. Letters in Applied Microbiology, 44, 602-606. https://doi.org/10.1111/j.1472-765X.2007.02132.x DOI: https://doi.org/10.1111/j.1472-765X.2007.02132.x
Ozmihci, S., & Kargi, F. (2007). Kinetics of batch ethanol fermentation of cheese-whey powder (CWP) solution as function of substrate and yeast concentrations. Bioresource Technology, 98, 2978-2984. https://doi.org/10.1016/j.biortech.2006.10.005 DOI: https://doi.org/10.1016/j.biortech.2006.10.005
Pandey, A., Srivastava, S., Rai, P., & Duke, M. (2019). Cheese whey to biohydrogen and useful organic acids: A nonpathogenic microbial treatment by L. acidophilus. Scientific Reports, 9, 8320. https://doi.org/10.1038/s41598-019-42752-3 DOI: https://doi.org/10.1038/s41598-019-42752-3
Parashar, A., Jin, Y., Mason, B., Chae, M., & Bressler, D. C. (2016). Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry. Journal of Dairy Science, 99(3), 1859-1867. http://dx.doi.org/10.3168/jds.2015-10059 DOI: https://doi.org/10.3168/jds.2015-10059
Pasotti, L., Zucca, S., Casanova, M., Micoli, G., Angelis, M. G. C. D., & Magni, P. (2017). Fermentation of lactose to ethanol in cheese whey permeate and concentrated permeate by engineered Escherichia coli. BMC Biotechnology, 17, 48. https://doi.org/10.1186/s12896-017-0369-y DOI: https://doi.org/10.1186/s12896-017-0369-y
Patel, S. A., & Parikh, S. C. (2016). Production of Lactic Acid from Whey by Lactobacillus sp. Isolated from Local Dairy Products. International Journal of Current Microbiology and Applied Sciences, 5(5), 734-741. http://dx.doi.org/10.20546/ijcmas.2016.505.074 DOI: https://doi.org/10.20546/ijcmas.2016.505.074
Pescuma, M., Hébert, E. M., Mozzi, F., & Valdez, G. F. d. (2008). Whey fermentation by thermophilic lactic acid bacteria: Evolution of carbohydrates and protein content. Food Microbiology, 25, 442-451. https://doi.org/10.1016/j.fm.2008.01.007 DOI: https://doi.org/10.1016/j.fm.2008.01.007
Pescuma, M., Valdez, G. F. d., & Mozzi, F. (2015). Whey-derived valuable products obtained by microbial fermentation. Applied Microbiology and Biotechnology, 99, 6183-6196. https://doi.org/10.1007/s00253-015-6766-z DOI: https://doi.org/10.1007/s00253-015-6766-z
Pisano, I., Agrimia, G., Grosso, G., Mena, M. C., Riccia, M. A., & Palmieri, L. (2015). Improved Saccharomyces Cerevisiae Growth on Cheese Whey by Controlling Enzymatic Lactose Hydrolysis. Chemical Engineering Transactions, 43, 637-642. https://doi.org/10.3303/CET1543107
Reddy, C. A., Henderson, H. E., & Erdman, M. D. (1976). Bacterial Fermentation of Cheese Whey for Production of a Ruminant Feed Supplement Rich in Crude Protein. Applied and Environmental Microbiology, 32(6), 769-776. https://doi.org/10.1128/aem.32.6.769-776.197 DOI: https://doi.org/10.1128/aem.32.6.769-776.1976
Remón, J., García, L., & Arauzo, J. (2016). Cheese whey management by catalytic steam reforming and aqueous phase reforming. Fuel Processing Technology, 154, 66-81. http://dx.doi.org/10.1016/j.fuproc.2016.08.012 DOI: https://doi.org/10.1016/j.fuproc.2016.08.012
Remón, J., Laseca, M., García, L., & Arauzo, J. (2016). Hydrogen production from cheese whey by catalytic steam reforming: Preliminary study using lactose as a model compound. Energy Conversion and Management, 114, 122-141. http://dx.doi.org/10.1016/j.enconman.2016.02.009 DOI: https://doi.org/10.1016/j.enconman.2016.02.009
Rito-Palomares, M., & Hernandez, M. (1998). Influence of system and process parameters on partitioning of cheese whey proteins in aqueous two-phase systems. Journal of Chromatography B, 711, 81-90. DOI: https://doi.org/10.1016/S0378-4347(98)00011-5
Rochín-Medina, J. J., Ramírez-Medina, H. K., Rangel-Peraza, J. G., Pineda-Hidalgo, K. V., & Iribe-Arellano, P. (2017). Use of whey as a culture medium for Bacillus clausii for the production of protein hydrolysates with antimicrobial and antioxidant activity. Food Science and Technology International, 24(1), 35-42. https://doi.org/10.1177/1082013217724705 DOI: https://doi.org/10.1177/1082013217724705
Rosa, P. R. F., Santos, S. C., & Silva, E. L. (2014). Different ratios of carbon sources in the fermentation of cheese whey and glucose as substrates for hydrogen and ethanol production in continuous reactors. International Journal of Hydrogen Energy, 39, 1288-1296. http://dx.doi.org/10.1016/j.ijhydene.2013.11.011 DOI: https://doi.org/10.1016/j.ijhydene.2013.11.011
Roy, D., Goulet, J., & Duy, A. L. (1987). Continuous Production of Lactic Acid from Whey Permeate by Free and Calcium Alginate Entrapped Lactobacillus helveticus. Journal of Dairy Science, 70, 506-513. https://doi.org/10.3168/jds.S0022-0302(87)80035-8 DOI: https://doi.org/10.3168/jds.S0022-0302(87)80035-8
Sansonetti, S., Curcio, S., Calabrò, V., & Iorio, G. (2010). Optimization of ricotta cheese whey (RCW) fermentation by response surface methodology. Bioresource Technology, 101, 9156-9162. https://doi.org/10.1016/j.biortech.2010.07.030 DOI: https://doi.org/10.1016/j.biortech.2010.07.030
Sarenkova, I., Orviz, S. S., Ciprovica, I., Renduele, M., & Diaz, M. (2021). Lactobionic Acid Production from Acid Whey under Different Fermentative Conditions. Journal of Advanced Agricultural Technologies, 8(2), 35-40. https://doi.org/10.18178/joaat.8.2.35-40 DOI: https://doi.org/10.18178/joaat.8.2.35-40
Sarkar, O., Rova, U., Christakopoulos, P., & Matsakas, L. (2024). Continuous biohydrogen and volatile fatty acids production from cheese whey in a tubular biofilm reactor: Substrate flow rate variations and microbial dynamics. International Journal of Hydrogen Energy, 59, 1305-1316. doi:https://doi.org/10.1016/j.ijhydene.2024.02.041 DOI: https://doi.org/10.1016/j.ijhydene.2024.02.041
Sayed, W. F., Salem, W. M., Sayed, Z. A., & Abdalla, A. K. (2020). Production of lactic acid from whey permeate using lactic acid bacteria isolated from cheese. International Journal of Veterinary Sciences, 3(2), 78-95. https://doi.org/10.21608/svu.2020.35000.1064 DOI: https://doi.org/10.21608/svu.2020.35000.1064
Silva, A. C., Guimaraes, P. M. R., Teixeira, J. A., & Domingues, L. (2010). Fermentation of deproteinized cheese whey powder solutions to ethanol by engineered Saccharomyces cerevisiae: effect of supplementation with corn steep liquor and repeated-batch operation with biomass recycling by flocculation. Journal of Industrial Microbiology and Biotechnology, 37, 973-982. https://doi.org/10.1007/s10295-010-0748-z DOI: https://doi.org/10.1007/s10295-010-0748-z
Silveira, W. B., Passos, F. J. V., Mantovani, H. C., & Passos, F. M. L. (2005). Ethanol production from cheese whey permeate by Kluyveromyces marxianus UFV-3: A flux analysis of oxido-reductive metabolism as a function of lactose concentration and oxygen levels. Enzyme and Microbial Technology, 36, 930-936. https://doi.org/10.1016/j.enzmictec.2005.01.018 DOI: https://doi.org/10.1016/j.enzmictec.2005.01.018
Soriano-Perez, S., Flores-Velez, L., Alonso-Davila, P., Cervantes-Cruz, G., & Arriaga, S. (2012). Production of lactic acid from cheese whey by batch cultures of Lactobacillus helveticus. Ann Microbiol, 62, 313-317. https://doi.org/10.1007/s13213-011-0264-z DOI: https://doi.org/10.1007/s13213-011-0264-z
Soumati, B., Atmani, M., Benabderrahmane, A., & Benjelloun, M. (2023). Whey Valorization – Innovative Strategies for Sustainable Development and Value-Added Product Creation. Journal of Ecological Engineering, 24(10), 86-104. https://doi.org/10.12911/22998993/169505 DOI: https://doi.org/10.12911/22998993/169505
Swathi, A., Sridevi, V., & Rao, G. H. (2015). Optimized lactic acid production from whey using hybrid design and ridge analysis. J Biochem Tech, 6(2), 945-951. https://jbiochemtech.com/storage/models/article/yT1Bz4UKrWT7CHtVeI SULK5R1apen16jbtRpw1rmDJo0tRdsFszDdm1gX0Qd/optimized-lactic-acid-production-from-whey-using-hybrid-design-and-ridge-analysis.pdf
Teli, A., Ficara, E., & Malpei, F. (2014). Bio-Hydrogen Production from Cheese Whey by Dark Fermentation. Chemical Engineering Transactions, 37, 613-618. https://doi.org/10.3303/CET1437103
Ünver, Y. (2021). Utilization of Cheese Whey for Production of Azurin by Pseudomonas aeruginosa. Sakarya University Journal of Science, 25(2), 601-609. https://doi.org/10.16984/saufenbilder.853961 DOI: https://doi.org/10.16984/saufenbilder.853961
Utama, G. L., Utba, F., Sari, V. F., Nurmilah, S., Cahyana, Y., & Balia, R. L. (2024). Exploring protein derivative profiles in cheese whey through native Candida tropicalis fermentation. International Journal of Food Properties, 27(1), 367-380. https://doi.org/10.1080/10942912.2024.2317746 DOI: https://doi.org/10.1080/10942912.2024.2317746
Yang, S.-T., Tang, I.-C., & Zhu, H. (1992). A Novel Fermentation Process for Calcium Magnesium Acetate (CMA) Production from Cheese Whey. Applied Biochemistry and Biotechnology, 34/35, 569-583. https://link.springer.com/article/10.1007/BF02920579 DOI: https://doi.org/10.1007/BF02920579
Zandona, E., Blažić, M., & Jambrak, A. R. (2021). Whey Utilization: Sustainable Uses and Environmental Approach. Food Technology & Biotechnology, 59(2), 147-151. https://doi.org/10.17113/ftb.59.02.21.6968 DOI: https://doi.org/10.17113/ftb.59.02.21.6968
Zotta, T., Solieri, L., Iacumin, L., Picozzi, C., & Gullo, M. (2020). Valorization of cheese whey using microbial fermentations. Applied Microbiology and Biotechnology, 1-16. https://doi.org/10.1007/s00253-020-10408-2 DOI: https://doi.org/10.1007/s00253-020-10408-2
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Amaury Pérez-Sánchez, Yoandra Marrero-Rodríguez, Niurca González-Ibarra, Rutdali María Segura-Silva, Diana Deisy Alcalá-Galiano-Morell (Autor/a)

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.