Diversidad de mariposas polinizadoras de plantas nativas en el corredor biológico del campus La María, Mocache, Ecuador

Autores/as

DOI:

https://doi.org/10.70881/mcj/v3/n4/85

Palabras clave:

mariposas polinizadoras, plantas nativas, índices ecológicos, conservación

Resumen

La conservación de los polinizadores es esencial para mantener la estabilidad ecológica y la reproducción de plantas nativas, especialmente en regiones tropicales donde la fragmentación del hábitat compromete interacciones ecológicas clave. Entre estos organismos, las mariposas destacan por su diversidad funcional y adaptabilidad en ambientes perturbados. Este estudio evaluó la diversidad de mariposas polinizadoras en el corredor biológico del campus La María (Mocache, Ecuador), mediante muestreo sistemático por transectos durante la estación seca de 2024. Se emplearon observación directa y captura con red entomológica, registrándose nueve taxones pertenecientes a diferentes familias de Lepidoptera. La caracterización morfológica reveló adaptaciones para el vuelo y mecanismos defensivos como mimetismo, camuflaje y aposematismo. El análisis de incidencia relativa mostró que Heliconius sp. fue la especie dominante (25,00 ± 0,87%), seguida de Phoebis philea y otros taxones con incidencias menores. La estructura comunitaria presentó una riqueza específica de S = 9, un índice de Shannon (H′) de 2,08 y una equidad de Pielou (J) de 0,9825, lo que indica alta diversidad alfa con una distribución equitativa de especies. Además, se identificaron seis especies vegetales asociadas a la actividad polinizadora de mariposas, entre ellas Lantana camara y Silphium asteriscus como las de mayor incidencia. La comunidad vegetal mostró una diversidad intermedia (H′ = 1,57; 1 − D = 0,78). Los resultados refuerzan el valor ecológico de los corredores biológicos como reservorios de biodiversidad y promotores de interacciones funcionales en ecosistemas tropicales fragmentados

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Ammir, H., Shamiya, H., & Mohd Abdul, N. (2024). Bees, butterflies, and beyond the diverse pollinators, an essence for the reproductive success of flowering plants. Journal of plant science and phytopathology, 8(2), 065–073. https://doi.org/10.29328/journal.jpsp.1001135 DOI: https://doi.org/10.29328/journal.jpsp.1001135

Ancillotto, L., Mosconi, F., & Labadessa, R. (2024). A matter of connection: the importance of habitat networks for endangered butterflies in anthropogenic landscapes. Urban Ecosystems, 27(5), 1623–1633. https://doi.org/10.1007/s11252-024-01542-0 DOI: https://doi.org/10.1007/s11252-024-01542-0

Bruschini, C., Simbula, G., Benetello, F., Dell’Olmo, L., Lazzaro, L., Mugnai, M., Paola, F., Pasquali, L., & Dapporto, L. (2024). Micro-habitat shifts by butterflies foster conservation strategies to preserve pollinator diversity in a warming Mediterranean climate. Ecological Indicators, 166(112253), 112253. https://doi.org/10.1016/j.ecolind.2024.112253 DOI: https://doi.org/10.1016/j.ecolind.2024.112253

Bussan, S. K., & Schultz, C. B. (2023). Can cattle grazing contribute to butterfly habitat? Using butterfly behavior as an index of habitat quality in an agroecosystem. Frontiers in ecology and evolution, 11. https://doi.org/10.3389/fevo.2023.1162060 DOI: https://doi.org/10.3389/fevo.2023.1162060

Chowdhury, S., Dubey, V. K., Choudhury, S., Das, A., Jeengar, D., Sujatha, B., Kumar, A., Kumar, N., Semwal, A., & Kumar, V. (2023). Insects as bioindicator: A hidden gem for environmental monitoring. Frontiers in environmental science, 11. https://doi.org/10.3389/fenvs.2023.1146052 DOI: https://doi.org/10.3389/fenvs.2023.1146052

Condamine, F. L., Allio, R., Reboud, E. L., Dupuis, J. R., Toussaint, E. F. A., Mazet, N., Hu, S.-J., Lewis, D. S., Kunte, K., Cotton, A. M., & Sperling, F. A. H. (2023). A comprehensive phylogeny and revised taxonomy illuminate the origin and diversification of the global radiation of Papilio (Lepidoptera: Papilionidae). Molecular Phylogenetics and Evolution, 183(107758), 107758. https://doi.org/10.1016/j.ympev.2023.107758 DOI: https://doi.org/10.1016/j.ympev.2023.107758

De Brito, E. M., & De Souza, A. S. B. (2020). Análise da percepção de estudantes do ensino médio sobre os insetos: um estudo de caso na cidade de Douradina, Paraná. Brazilian Journal Of Animal And Environmental Research, 3(3), 2082-2095. https://doi.org/10.34188/bjaerv3n3-120 DOI: https://doi.org/10.34188/bjaerv3n3-120

Deoramnauth, D., Bhagarathi, L. K., Silva, P. N. B. D., Pestano, F., Kalika-Singh, S., Arjune, Y., & Maharaj, G. (2025). Lepidopteran inventory and diversity of at two sites at cotton tree, Mahaica-Berbice, Guyana. Journal of entomology and zoology studies, 13(1), 39–50. https://doi.org/10.22271/j.ento.2025.v13.i1a.9446 DOI: https://doi.org/10.22271/j.ento.2025.v13.i1a.9446

Duque-Trujillo, D., Hincapié, C. A., Osorio, M., & Zartha-Sossa, J. W. (2023). Strategies for the attraction and conservation of natural pollinators in agroecosystems: a systematic review. International Journal of Environmental Science and Technology: IJEST, 20(4), 4499–4512. https://doi.org/10.1007/s13762-022-04634-6 DOI: https://doi.org/10.1007/s13762-022-04634-6

Endara, M.-J., Forrister, D., Nicholls, J., Stone, G. N., Kursar, T., & Coley, P. (2022). Impacts of plant defenses on host choice by Lepidoptera in neotropical rainforests. En Fascinating Life Sciences (pp. 93–114). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-86688-4_4

Galetto, L., Aizen, M. A., Del Coro Arizmendi, M., Freitas, B. M., Garibaldi, L. A., Giannini, T. C., Lopes, A. V., Do Espírito Santo, M. M., Maués, M. M., Nates-Parra, G., Rodríguez, J. I., Quezada-Euán, J. J. G., Vandame, R., Viana, B. F., & Imperatriz-Fonseca, V. L. (2022). Risks and opportunities associated with pollinators’ conservation and management of pollination services in Latin America. Ecologia Austral, 32(1), 055–076. https://doi.org/10.25260/ea.22.32.1.0.1790 DOI: https://doi.org/10.25260/EA.22.32.1.0.1790

Halali, S., van Bergen, E., Breuker, C. J., Brakefield, P. M., & Brattström, O. (2021). Seasonal environments drive convergent evolution of a faster pace-of-life in tropical butterflies. Ecology Letters, 24(1), 102–112. https://doi.org/10.1111/ele.13626 DOI: https://doi.org/10.1111/ele.13626

Hulshof, C. M., Ackerman, J. D., Franqui, R. A., Kawahara, A. Y., & Restrepo, C. (2024). Temperature seasonality drives taxonomic and functional homogenization of tropical butterflies. Diversity & Distributions, 30(7). https://doi.org/10.1111/ddi.13814 DOI: https://doi.org/10.1111/ddi.13814

Kantsa, A., De Moraes, C. M., & Mescher, M. C. (2023). Global change and plant–pollinator communities in Mediterranean biomes. Global Ecology and Biogeography: A Journal of Macroecology, 32(11), 1893–1913. https://doi.org/10.1111/geb.13753 DOI: https://doi.org/10.1111/geb.13753

Kotze, D. J., Lowe, E. C., MacIvor, J. S., Ossola, A., Norton, B. A., Hochuli, D. F., Mata, L., Moretti, M., Gagné, S. A., Handa, I. T., Jones, T. M., Threlfall, C. G., & Hahs, A. K. (2022). Urban forest invertebrates: how they shape and respond to the urban environment. Urban Ecosystems, 25(6), 1589–1609. https://doi.org/10.1007/s11252-022-01240-9 DOI: https://doi.org/10.1007/s11252-022-01240-9

López-Vázquez, K., Lara, C., Corcuera, P., & Castillo-Guevara, C. (2024). Temporal shifts in flower-visiting butterfly communities and their floral resources along a vegetation type altered by anthropogenic factors. Forests, 15(9), 1668. https://doi.org/10.3390/f15091668 DOI: https://doi.org/10.3390/f15091668

Mattila, A. L. K., Jiggins, C. D., Opedal, Ø. H., Montejo-Kovacevich, G., Pinheiro de Castro, É. C., McMillan, W. O., Bacquet, C., & Saastamoinen, M. (2021). Evolutionary and ecological processes influencing chemical defense variation in an aposematic and mimetic Heliconius butterfly. PeerJ, 9(e11523), e11523. https://doi.org/10.7717/peerj.11523 DOI: https://doi.org/10.7717/peerj.11523

Mutamiswa, R., Mbande, A., Nyamukondiwa, C., & Chidawanyika, F. (2023). Thermal adaptation in Lepidoptera under shifting environments: mechanisms, patterns, and consequences. Phytoparasitica; Israel Journal of Plant Protection Sciences, 51(5), 929–955. https://doi.org/10.1007/s12600-023-01095-6 DOI: https://doi.org/10.1007/s12600-023-01095-6

Núñez, R., Willmott, K. R., Álvarez, Y., Genaro, J. A., Pérez-Asso, A. R., Quejereta, M., Turner, T., Miller, J. Y., Brévignon, C., Lamas, G., & Hausmann, A. (2022). Integrative taxonomy clarifies species limits in the hitherto monotypic passion‐vine butterfly genera Agraulis and Dryas (Lepidoptera, Nymphalidae, Heliconiinae). Systematic Entomology, 47(1), 152–178. https://doi.org/10.1111/syen.12523 DOI: https://doi.org/10.1111/syen.12523

Oliveira, J. B. B. S., Oliveira, H. F. M., Dáttilo, W., & Paolucci, L. N. (2024). Anthropogenic impacts on plant-pollinator networks of tropical forests: implications for pollinators coextinction. Biodiversity and Conservation. https://doi.org/10.1007/s10531-024-02974-y DOI: https://doi.org/10.1007/s10531-024-02974-y

Parra-Tabla, V., & Arceo-Gómez, G. (2021). Impacts of plant invasions in native plant-pollinator networks. The New Phytologist, 230(6), 2117–2128. https://doi.org/10.1111/nph.17339 DOI: https://doi.org/10.1111/nph.17339

Patil, P. B., Rajah, R. A., Bora, N. R., Brahma, D., Krishnan, S. N., Vasanth, V., Nath, I., Dutta, P. L., & Nitish, G. (2024). Pollination ecology: Understanding plant-pollinator relationships. International Journal of Research in Agronomy, 7(5), 101–105. https://doi.org/10.33545/2618060x.2024.v7.i5b.654 DOI: https://doi.org/10.33545/2618060X.2024.v7.i5b.654

Sinha, S. K., Dolai, A., Roy, A. B., Manna, S., & Das, A. (2023). The flower colour influences spontaneous nectaring in butterflies: A case study with twenty subtropical butterflies. Neotropical Entomology, 52(6), 1027–1040. https://doi.org/10.1007/s13744-023-01086-6 DOI: https://doi.org/10.1007/s13744-023-01086-6

Sunde, J., Askling, J., Kindvall, O., Johansson, V., & Franzén, M. (2024). Negative impacts of future forest succession on three threatened butterfly species. Biodiversity and Conservation, 33(10), 2885–2910. https://doi.org/10.1007/s10531-024-02892-z DOI: https://doi.org/10.1007/s10531-024-02892-z

Tan, D., Parus, A., Dunbar, M., Espeland, M., & Willmott, K. R. (2021). Cytochromecoxidase subunit I barcode species delineation methods imply critically underestimated diversity in ‘common’Hermeuptychiabutterflies (Lepidoptera: Nymphalidae: Satyrinae). Zoological Journal of the Linnean Society, 193(4), 1256–1270. https://doi.org/10.1093/zoolinnean/zlab007 DOI: https://doi.org/10.1093/zoolinnean/zlab007

Von Schmalensee, L., Caillault, P., Gunnarsdóttir, K. H., Gotthard, K., & Lehmann, P. (2023). Seasonal specialization drives divergent population dynamics in two closely related butterflies. Nature Communications, 14(1), 3663. https://doi.org/10.1038/s41467-023-39359-8 DOI: https://doi.org/10.1038/s41467-023-39359-8

Publicado

2025-10-01

Cómo citar

Vilela Sabando, O. C., Cedeño Moreira, A. V., Saldarreaga Chichande, G. A., & Almeida Calderón, F. R. (2025). Diversidad de mariposas polinizadoras de plantas nativas en el corredor biológico del campus La María, Mocache, Ecuador. Multidisciplinary Collaborative Journal, 3(4), 1-16. https://doi.org/10.70881/mcj/v3/n4/85

Artículos similares

1-10 de 24

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a